A284815 Least number k such that k mod (2, 3, 4, ... , n+1) = (d_n, d_n-1, ..., d_1), where d_1 , d_2, ..., d_n are the digits of k, with MSD(k) = d_1 and LSD(k) = d_n. 0 if such a number does not exist.
1, 10, 0, 1101, 11311, 340210, 4620020, 12040210, 151651121, 1135531101, 0, 894105331101, 0, 15379177511311, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
a(7) = 4620020 because: 4620020 mod 2 = 0, 4620020 mod 3 = 2, 4620020 mod 4 = 0, 4620020 mod 5 = 0, 4620020 mod 6 = 2, 4620020 mod 7 = 6, 4620020 mod 8 = 4.
Programs
-
Maple
P:=proc(q) local a,d,j,k,n,ok; for k from 1 to q do d:=0; for n from 10^(k-1) to 10^k-1 do ok:=1; a:=n; for j from 1 to ilog10(n)+1 do if (a mod 10)<>n mod (j+1) then ok:=0; break; else a:=trunc(a/10); fi; od; if ok=1 then print(n); d:=1; break; fi; od; if n=10^k and d=0 then print(0); fi; od; end: P(20);
Formula
Conjecture: a(n) = 0 for all n >= 15. - Max Alekseyev, Nov 10 2022
Extensions
a(11)-a(15) from Giovanni Resta, Apr 10 2017
a(16)-a(50) from Max Alekseyev, Nov 10 2022