cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284815 Least number k such that k mod (2, 3, 4, ... , n+1) = (d_n, d_n-1, ..., d_1), where d_1 , d_2, ..., d_n are the digits of k, with MSD(k) = d_1 and LSD(k) = d_n. 0 if such a number does not exist.

Original entry on oeis.org

1, 10, 0, 1101, 11311, 340210, 4620020, 12040210, 151651121, 1135531101, 0, 894105331101, 0, 15379177511311, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Paolo P. Lava, Apr 10 2017

Keywords

Examples

			a(7) = 4620020 because:
4620020 mod 2 = 0, 4620020 mod 3 = 2, 4620020 mod 4 = 0,
4620020 mod 5 = 0, 4620020 mod 6 = 2, 4620020 mod 7 = 6,
4620020 mod 8 = 4.
		

Programs

  • Maple
    P:=proc(q) local a,d,j,k,n,ok; for k from 1 to q do d:=0; for n from 10^(k-1) to 10^k-1 do
    ok:=1; a:=n; for j from 1 to ilog10(n)+1 do if (a mod 10)<>n mod (j+1)
    then ok:=0; break; else a:=trunc(a/10); fi; od; if ok=1 then print(n); d:=1; break; fi; od;
    if n=10^k and d=0 then print(0); fi; od; end: P(20);

Formula

Conjecture: a(n) = 0 for all n >= 15. - Max Alekseyev, Nov 10 2022

Extensions

a(11)-a(15) from Giovanni Resta, Apr 10 2017
a(16)-a(50) from Max Alekseyev, Nov 10 2022