cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A284921 Numbers with digits 2 and 7 only.

Original entry on oeis.org

2, 7, 22, 27, 72, 77, 222, 227, 272, 277, 722, 727, 772, 777, 2222, 2227, 2272, 2277, 2722, 2727, 2772, 2777, 7222, 7227, 7272, 7277, 7722, 7727, 7772, 7777, 22222, 22227, 22272, 22277, 22722, 22727, 22772, 22777, 27222, 27227, 27272, 27277, 27722, 27727
Offset: 1

Views

Author

Jaroslav Krizek, Apr 05 2017

Keywords

Comments

Prime terms are in A020459.

Crossrefs

Cf. Numbers with digits 2 and k only for k = 0 - 1 and 3 - 9: A169965 (k = 0), A007931 (k = 1), A032810 (k = 3), A284920 (k = 4), A072961 (k = 5), A284632 (k = 6), this sequence (k = 7), A284922 (k = 8), A284923 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {2, 7}]
  • Mathematica
    Flatten@ Array[FromDigits /@ Tuples[{2, 7}, #] &, 5] (* Michael De Vlieger, Apr 06 2017 *)

A284971 Numbers with digits 4 and 7 only.

Original entry on oeis.org

4, 7, 44, 47, 74, 77, 444, 447, 474, 477, 744, 747, 774, 777, 4444, 4447, 4474, 4477, 4744, 4747, 4774, 4777, 7444, 7447, 7474, 7477, 7744, 7747, 7774, 7777, 44444, 44447, 44474, 44477, 44744, 44747, 44774, 44777, 47444, 47447, 47474, 47477, 47744, 47747
Offset: 1

Views

Author

Jaroslav Krizek, Apr 07 2017

Keywords

Crossrefs

Prime terms are in A020465.
Numbers with digits 4 and k only for k = 0 - 3 and 5 - 9: A169967 (k = 0), A032822 (k = 1), A284920 (k = 2), A032834 (k = 3), A256290 (k = 5), A284634 (k = 6), this sequence (k = 7), A284972 (k = 8), A284973 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {4, 7}]
    
  • Mathematica
    Flatten@ Table[FromDigits /@ Tuples[{4, 7}, n], {n, 5}] (* Giovanni Resta, Apr 08 2017 *)
  • PARI
    is(n) = my(x=Set([4, 7]), y=Set([0, 1, 2, 3, 5, 6, 8, 9])); if(#setintersect(Set(digits(n)), x) > 0 && #setintersect(Set(digits(n)), y)==0, return(1)); 0 \\ Felix Fröhlich, Apr 08 2017
    
  • Python
    def a(n):
      b = bin(n+1)[3:]
      return int("".join(b.replace("0", "4").replace("1", "7")))
    print([a(n) for n in range(1, 45)]) # Michael S. Branicky, Apr 07 2021

A284973 Numbers with digits 4 and 9 only.

Original entry on oeis.org

4, 9, 44, 49, 94, 99, 444, 449, 494, 499, 944, 949, 994, 999, 4444, 4449, 4494, 4499, 4944, 4949, 4994, 4999, 9444, 9449, 9494, 9499, 9944, 9949, 9994, 9999, 44444, 44449, 44494, 44499, 44944, 44949, 44994, 44999, 49444, 49449, 49494, 49499, 49944, 49949
Offset: 1

Views

Author

Jaroslav Krizek, Apr 07 2017

Keywords

Crossrefs

Prime terms are in A020466.
Numbers with digits 4 and k only for k = 0 - 3 and 5 - 9: A169967 (k = 0), A032822 (k = 1), A284920 (k = 2), A032834 (k = 3), A256290 (k = 5), A284634 (k = 6), A284971 (k = 7), A284972 (k = 8), this sequence (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {4, 9}]
    
  • PARI
    a(n,{p=[4,9]})={my(v=binary(n+1));fromdigits(vector(#v-1,i,p[2]*v[i+1]+p[1]*!v[i+1]))} \\ R. J. Cano, Apr 09 2017

A284922 Numbers with digits 2 and 8 only.

Original entry on oeis.org

2, 8, 22, 28, 82, 88, 222, 228, 282, 288, 822, 828, 882, 888, 2222, 2228, 2282, 2288, 2822, 2828, 2882, 2888, 8222, 8228, 8282, 8288, 8822, 8828, 8882, 8888, 22222, 22228, 22282, 22288, 22822, 22828, 22882, 22888, 28222, 28228, 28282, 28288, 28822, 28828
Offset: 1

Views

Author

Jaroslav Krizek, Apr 05 2017

Keywords

Comments

All terms are even.

Crossrefs

Cf. Numbers with digits 2 and k only for k = 0 - 1 and 3 - 9: A169965 (k = 0), A007931 (k = 1), A032810 (k = 3), A284920 (k = 4), A072961 (k = 5), A284632 (k = 6), A284921 (k = 7), this sequence (k = 8), A284923 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {2, 8}]
  • Mathematica
    Flatten@ Array[FromDigits /@ Tuples[{2, 8}, #] &, 5] (* Michael De Vlieger, Apr 06 2017 *)

Formula

a(n) = 2 * A032822(n).

A284923 Numbers with digits 2 and 9 only.

Original entry on oeis.org

2, 9, 22, 29, 92, 99, 222, 229, 292, 299, 922, 929, 992, 999, 2222, 2229, 2292, 2299, 2922, 2929, 2992, 2999, 9222, 9229, 9292, 9299, 9922, 9929, 9992, 9999, 22222, 22229, 22292, 22299, 22922, 22929, 22992, 22999, 29222, 29229, 29292, 29299, 29922, 29929
Offset: 1

Views

Author

Jaroslav Krizek, Apr 06 2017

Keywords

Crossrefs

Prime terms are in A020460.
Numbers with digits 2 and k only for k = 0 - 1 and 3 - 9: A169965 (k = 0), A007931 (k = 1), A032810 (k = 3), A284920 (k = 4), A072961 (k = 5), A284632 (k = 6), A284921 (k = 7), A284922 (k = 8), this sequence (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {2, 9}]
  • Mathematica
    Select[Range[30000],SubsetQ[{2,9},Sort[DeleteDuplicates[IntegerDigits[#]]]] &] (* Stefano Spezia, Aug 06 2025 *)

A284972 Numbers with digits 4 and 8 only.

Original entry on oeis.org

4, 8, 44, 48, 84, 88, 444, 448, 484, 488, 844, 848, 884, 888, 4444, 4448, 4484, 4488, 4844, 4848, 4884, 4888, 8444, 8448, 8484, 8488, 8844, 8848, 8884, 8888, 44444, 44448, 44484, 44488, 44844, 44848, 44884, 44888, 48444, 48448, 48484, 48488, 48844, 48848
Offset: 1

Views

Author

Jaroslav Krizek, Apr 07 2017

Keywords

Comments

All terms are even.

Crossrefs

Numbers with digits 4 and k only for k = 0 - 3 and 5 - 9: A169967 (k = 0), A032822 (k = 1), A284920 (k = 2), A032834 (k = 3), A256290 (k = 5), A284634 (k = 6), A284971 (k = 7), this sequence (k = 8), A284973 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {4, 8}]
    
  • Mathematica
    Flatten@ Table[FromDigits /@ Tuples[{4, 8}, n], {n, 5}] (* Giovanni Resta, Apr 07 2017 *)
  • PARI
    a(n) = my (b = binary(1+n)); b[1] = 0; return (4*(10^(#b-1)-1)/(10-1) + (8-4)*fromdigits(b)) \\ Rémy Sigrist, Apr 08 2017
    
  • PARI
    a(n)={my(v=binary(n+1));v[1]=0;v+=vector(#v,i,i>1);4*fromdigits(v)} \\ R. J. Cano, Apr 08 2017
    
  • PARI
    a(n,{p=[4,8]})={my(v=binary(n+1));fromdigits(vector(#v-1,i,p[2]*v[i+1]+p[1]*!v[i+1]))} \\ R. J. Cano, Apr 09 2017

Formula

a(n) = 2 * A284920(n) = 4 * A032822(n).
Showing 1-6 of 6 results.