cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284926 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^5.

Original entry on oeis.org

1, 31, 244, 991, 3126, 7564, 16808, 31711, 59293, 96906, 161052, 241804, 371294, 521048, 762744, 1014751, 1419858, 1838083, 2476100, 3097866, 4101152, 4992612, 6436344, 7737484, 9768751, 11510114, 14408200, 16656728, 20511150, 23645064, 28629152, 32472031, 39296688
Offset: 1

Views

Author

Seiichi Manyama, Apr 06 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A000584 and A062157 which are both multiplicative. - Andrew Howroyd, Jul 20 2018

Crossrefs

Sum_{d|n} (-1)^(n/d+1)*d^k: A000593 (k=1), A078306 (k=2), A078307 (k=3), A284900 (k=4), this sequence (k=5), A284927 (k=6), A321552 (k=7), A321553 (k=8), A321554 (k=9), A321555 (k=10), A321556 (k=11), A321557 (k=12).

Programs

  • Mathematica
    Table[Sum[(-1)^(n/d + 1)*d^5, {d, Divisors[n]}], {n, 50}] (* Indranil Ghosh, Apr 06 2017 *)
    f[p_, e_] := (p^(5*e + 5) - 1)/(p^5 - 1); f[2, e_] := (15*2^(5*e + 1) + 1)/31; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d + 1)*d^5); \\ Indranil Ghosh, Apr 06 2017
    
  • Python
    from sympy import divisors
    print([sum((-1)**(n//d + 1)*d**5 for d in divisors(n)) for n in range(1, 51)]) # Indranil Ghosh, Apr 06 2017

Formula

G.f.: Sum_{k>=1} k^5*x^k/(1 + x^k). - Ilya Gutkovskiy, Apr 07 2017
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (15*2^(5*e+1)+1)/31, and a(p^e) = (p^(5*e+5) - 1)/(p^5 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^6, where c = 31*zeta(6)/192 = 0.164258... . (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018