A284949 Triangle read by rows: T(n,k) = number of reversible string structures of length n using exactly k different symbols.
1, 1, 1, 1, 2, 1, 1, 5, 4, 1, 1, 9, 15, 6, 1, 1, 19, 50, 37, 9, 1, 1, 35, 160, 183, 76, 12, 1, 1, 71, 502, 877, 542, 142, 16, 1, 1, 135, 1545, 3930, 3523, 1346, 242, 20, 1, 1, 271, 4730, 17185, 21393, 11511, 2980, 390, 25, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 2, 1; 1, 5, 4, 1; 1, 9, 15, 6, 1; 1, 19, 50, 37, 9, 1; 1, 35, 160, 183, 76, 12, 1; 1, 71, 502, 877, 542, 142, 16, 1; 1, 135, 1545, 3930, 3523, 1346, 242, 20, 1; 1, 271, 4730, 17185, 21393, 11511, 2980, 390, 25, 1;
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- B. Ahmadi, F. Alinaghipour and M. H. Shekarriz, Number of Distinguishing Colorings and Partitions, arXiv:1910.12102 [math.CO], 2019.
- Mohammad Hadi Shekarriz, GAP Program
Crossrefs
Programs
-
Mathematica
(* achiral color patterns for row of n colors containing k different colors *) Ach[n_, k_] := Ach[n, k] = Switch[k, 0, If[0==n, 1, 0], 1, If[n>0, 1, 0], (* else *) _, If[OddQ[n], Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1], {i, 0, (n-1)/2}], Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1] + 2^i Ach[n-2-2i, k-2]), {i, 0, n/2-1}]]] Table[(StirlingS2[n, k] + Ach[n, k])/2, {n, 1, 15}, {k, 1, n}] // Flatten (* Robert A. Russell, Feb 10 2018 *)
-
PARI
\\ see A056391 for Polya enumeration functions T(n,k) = NonequivalentStructsExactly(ReversiblePerms(n), k); \\ Andrew Howroyd, Oct 14 2017
-
PARI
\\ Ach is A304972 as square matrix. Ach(n)={my(M=matrix(n,n,i,k,i>=k)); for(i=3, n, for(k=2, n, M[i,k]=k*M[i-2,k] + M[i-2,k-1] + if(k>2, M[i-2,k-2]))); M} T(n)={(matrix(n, n, i, k, stirling(i, k, 2)) + Ach(n))/2} { my(A=T(10)); for(n=1, #A, print(A[n,1..n])) } \\ Andrew Howroyd, Sep 18 2019
Comments