cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284966 Triangle read by rows: coefficients of the scaled Lucas polynomials x^(n/2)*L(n, sqrt(x)) for n >= 0, sorted by descending powers of x.

Original entry on oeis.org

2, 1, 0, 2, 1, 0, 0, 3, 1, 0, 0, 2, 4, 1, 0, 0, 0, 5, 5, 1, 0, 0, 0, 2, 9, 6, 1, 0, 0, 0, 0, 7, 14, 7, 1, 0, 0, 0, 0, 2, 16, 20, 8, 1, 0, 0, 0, 0, 0, 9, 30, 27, 9, 1, 0, 0, 0, 0, 0, 2, 25, 50, 35, 10, 1, 0, 0, 0, 0, 0, 0, 11, 55, 77, 44, 11, 1, 0, 0, 0, 0, 0, 0, 2, 36, 105, 112, 54, 12, 1
Offset: 0

Views

Author

Eric W. Weisstein, Apr 06 2017

Keywords

Comments

For n >= 3, also the coefficients of the edge and vertex cover polynomials for the n-cycle graph C_n.
For more information on how this triangular array is related to the work of Charalambides (1991) and Moser and Abramson (1969), see the comments for triangular array A212634 (which contains additional formulas). The coefficients of these polynomials are given by formula (2.1), p. 291, in Charalambides (1991), where an obvious typo in the index of the summation must be corrected (floor(n/K) -> floor(n/K) - 1). - Petros Hadjicostas, Jan 27 2019

Examples

			First few polynomials are
  2;
  x;
  2*x + x^2;
  3*x^2 + x^3;
  2*x^2 + 4*x^3 + x^4;
  5*x^3 + 5*x^4 + x^5;
  ...
giving
  2;
  0, 1;
  0, 2, 1;
  0, 0, 3, 1;
  0, 0, 2, 4, 1;
  0, 0, 0, 5, 5, 1;
  ...
		

Crossrefs

Cf. A034807 (Lucas polynomials x^(n/2)*L(n, 1/sqrt(x))).

Programs

  • Maple
    L := proc (n, K, x) -1 + sum((-1)^j*n*binomial(n - j*K, j)*x^j*(x+1)^(n - j*(K+1))/(n - j*K), j = 0 .. floor(n/(K + 1))) end proc; for i to 30 do expand(L(i, 2, x)) end do; # gives the g.f. of row n for 1 <= n <= 30. - Petros Hadjicostas, Jan 27 2019
  • Mathematica
    CoefficientList[Table[x^(n/2) LucasL[n, Sqrt[x]], {n, 12}], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
    CoefficientList[Table[2 x^n (-1/x)^(n/2) ChebyshevT[n, 1/(2 Sqrt[-1/x])], {n, 12}], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
    CoefficientList[Table[FunctionExpand[2 (-(1/x))^(n/2) x^n Cos[n ArcSec[2 Sqrt[-(1/x)]]]], {n, 15}], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
    CoefficientList[LinearRecurrence[{x, x}, {x, x (2 + x)}, 15], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)

Extensions

First element T(n=0, k=0) and the example corrected by Petros Hadjicostas, Jan 27 2019
Name edited by Petros Hadjicostas, Jan 27 2019 and by Stefano Spezia, Mar 09 2025