cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A058528 Number of n X n (0,1) matrices with all column and row sums equal to 4.

Original entry on oeis.org

1, 0, 0, 0, 1, 120, 67950, 68938800, 116963796250, 315031400802720, 1289144584143523800, 7722015017013984456000, 65599839591251908982712750, 769237071909157579108571190000, 12163525741347497524178307740904300
Offset: 0

Views

Author

David desJardins, Dec 22 2000

Keywords

Comments

Further terms generated by a Mathematica program written by Gordon G. Cash, who thanks B. R. Perez-Salvador, Universidad Autonoma Metropolitana Unidad Iztapalapa, Mexico, for providing the algorithm on which this program was based.
Also number of ways to arrange 4n rooks on an n X n chessboard, with no more than 4 rooks in each row and column. - Vaclav Kotesovec, Aug 04 2013
Generally (Canfield + McKay, 2004), a(n) ~ exp(-1/2) * binomial(n,s)^(2*n) / binomial(n^2,s*n), or a(n) ~ sqrt(2*Pi) * exp(-n*s-1/2*(s-1)^2) * (n*s)^(n*s+1/2) * (s!)^(-2*n). - Vaclav Kotesovec, Aug 04 2013

Examples

			a(4) = 1 because there is only one possible 4 X 4 (0,1) matrix with all row and column sums equal to 4, the matrix of all 1's. a(5) = 120 = 5! because there are 5X4X3X2X1 ways of placing a zero in each successive column (row) so that it is not in the same row (column) as any previously placed.
		

References

  • B. R. Perez-Salvador, S. de los Cobos Silva, M. A. Gutierrez-Andrade and A. Torres-Chazaro, A Reduced Formula for Precise Numbers of (0,1) Matrices in a(R,S), Disc. Math., 2002, 256, 361-372.

Crossrefs

Column 4 of A008300. Row sums of A284991.

Formula

a(n) = 24^{-n} sum_{alpha +beta + gamma + mu + u =n}frac{3^{ gamma }(-6)^{beta +u }8^{ mu }(n!)^{2}(4alpha +2 gamma + mu )!(beta +2 gamma )!}{alpha!beta! gamma! mu!u!} sum_{i=0}^{ floor (beta +2 gamma )/2 }frac{1}{24^{alpha - gamma +i}2^{beta +2 gamma -i}i!(beta +2 gamma -2i)!(alpha - gamma +i)!} - Shanzhen Gao, Nov 07 2007
From Vaclav Kotesovec, Aug 04 2013: (Start)
a(n) ~ exp(-1/2)*C(n,4)^(2*n)/C(n^2,4*n), (Canfield + McKay, 2004).
a(n) ~ sqrt(Pi)*2^(2*n+3/2)*9^(-n)*exp(-4*n-9/2)*n^(4*n+1/2).
(End)

Extensions

More terms from Gordon G. Cash (cash.gordon(AT)epa.gov), Oct 22 2002
More terms from Vladeta Jovovic, Nov 12 2006

A284989 Triangle T(n,k) read by rows: the number of n X n {0,1} matrices with trace k where each row sum and each column sum is 2.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 0, 3, 2, 9, 24, 24, 24, 9, 216, 540, 610, 420, 210, 44, 7570, 18000, 20175, 13720, 6300, 1920, 265, 357435, 829920, 909741, 617610, 284235, 91140, 19005, 1854, 22040361, 50223600, 54295528, 36663312, 17072790, 5679184, 1337280, 203952, 14833
Offset: 0

Views

Author

R. J. Mathar, Apr 07 2017

Keywords

Examples

			0:         1
1:         0        0
2:         0        0        1
3:         1        0        3        2
4:         9       24       24       24        9
5:       216      540      610      420      210      44
6:      7570    18000    20175    13720     6300    1920     265
7:    357435   829920   909741   617610   284235   91140   19005   1854
8:  22040361 50223600 54295528 36663312 17072790 5679184 1337280 203952 14833
		

Crossrefs

Cf. A001499 (row sums), A000166 (diagonal), A007107 (column 0).

Programs

  • PARI
    P(n, t='t) = {
      my(z=vector(n, k, eval(Str("z", k))),
         s1=sum(k=1, #z, z[k]), s2=sum(k=1, #z, z[k]^2), s12=(s1^2 - s2)/2,
         f=vector(n, k, t*(s12 - z[k]*(s1 - z[k])) + z[k]*(s1 - z[k])), g=1);
      for (i=1, n, g *= f[i]; for(j=1, n, g=substpol(g, z[j]^3, 0)));
      for (k=1, n, g=polcoef(g, 2, z[k]));
      g;
    };
    seq(N) = concat([[1], [0, 0], [0, 0, 1]], apply(n->Vec(P(n)), [3..N]));
    concat(seq(8)) \\ Gheorghe Coserea, Dec 21 2018

Formula

Let z1..zn be n variables and s1 = Sum_{k=1..n} zk, s2 = Sum_{k=1..n} zk^2, s12 = (s1^2 - s2)/2, fk = t*(s12 - zk*(s1 - zk)) + zk*(s1 - zk) for k=1..n, P_n(t) = [(z1..zn)^2] Product_{k=1..n} fk. Then P_n(t) = Sum_{k=0..n} T(n,k)*t^(n-k), n >= 3. - Gheorghe Coserea, Dec 21 2018

A364068 Triangle T(n,k) read by rows: Number of traceless binary n X n matrices with all row and column sums equal to k, 1<=k<=n.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 9, 9, 1, 0, 44, 216, 44, 1, 0, 265, 7570, 7570, 265, 1, 0, 1854, 357435, 1975560, 357435, 1854, 1, 0, 14833, 22040361, 749649145, 749649145, 22040361, 14833, 1, 0, 133496, 1721632024
Offset: 1

Views

Author

R. J. Mathar, Jul 04 2023

Keywords

Examples

			    0
    1        0
    2        1         0
    9        9         1      0
   44      216        44      1    0
  265     7570      7570    265    1 0
 1854   357435   1975560 357435 1854 1 0
14833 22040361 749649145
		

Crossrefs

Cf. A000166 (k=1), A007107 (k=2), A284989 (see 1st col), A284990 (see 1st col, k=3), A007105 (k=3?), A284991 (see 1st col, k=4), A008300 (any trace)

Formula

T(n,n)=0. (k=n would require a 1 on the diagonal)
T(n,n-1)=1. (1 at all entries but the diagonal)
T(n,n-k) = T(n,k-1). (Flip entries 0<->1 and erase diagonal) - R. J. Mathar, Jul 26 2023
Showing 1-3 of 3 results.