cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A185105 Number T(n,k) of entries in the k-th cycles of all permutations of {1,2,..,n}; each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements.

Original entry on oeis.org

1, 3, 1, 12, 5, 1, 60, 27, 8, 1, 360, 168, 59, 12, 1, 2520, 1200, 463, 119, 17, 1, 20160, 9720, 3978, 1177, 221, 23, 1, 181440, 88200, 37566, 12217, 2724, 382, 30, 1, 1814400, 887040, 388728, 135302, 34009, 5780, 622, 38, 1, 19958400, 9797760, 4385592, 1606446, 441383, 86029, 11378, 964, 47, 1
Offset: 1

Views

Author

Wouter Meeussen, Dec 26 2012

Keywords

Comments

Row sums are n!*n = A001563(n) (see example).
For fixed k>=1, A185105(n,k) ~ n!*n/2^k. - Vaclav Kotesovec, Apr 25 2017

Examples

			The six permutations of n=3 in ordered cycle form are:
{ {1}, {2}, {3}    }
{ {1}, {2, 3}, {}  }
{ {1, 2}, {3}, {}  }
{ {1, 2, 3}, {}, {}}
{ {1, 3, 2}, {}, {}}
{ {1, 3}, {2}, {}  }
.
The lengths of the cycles in position k=1 sum to 12, those of the cycles in position k=2 sum to 5 and those of the cycles in position k=3 sum to 1.
Triangle begins:
       1;
       3,     1;
      12,     5,     1;
      60,    27,     8,     1;
     360,   168,    59,    12,    1;
    2520,  1200,   463,   119,   17,   1;
   20160,  9720,  3978,  1177,  221,  23,  1;
  181440, 88200, 37566, 12217, 2724, 382, 30, 1;
  ...
		

Crossrefs

Columns k=1-10 give: A001710(n+1), A138772, A159324(n-1)/2 or A285231, A285232, A285233, A285234, A285235, A285236, A285237, A285238.
T(2n,n) gives A285239.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          add((p-> p+coeff(p, x, 0)*j*x^i)(b(n-j, i+1))*
           binomial(n-1, j-1)*(j-1)!, j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 1)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Apr 15 2017
  • Mathematica
    Table[it = Join[RotateRight /@ ToCycles[#], Table[{}, {k}]] & /@ Permutations[Range[n]]; Tr[Length[Part[#, k]]& /@ it], {n, 7}, {k, n}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = Expand[If[n==0, 1, Sum[Function[p, p + Coefficient[ p, x, 0]*j*x^i][b[n-j, i+1]]*Binomial[n-1, j-1]*(j-1)!, {j, 1, n}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, 1]];
    Array[T, 12] // Flatten (* Jean-François Alcover, May 30 2018, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Apr 15 2017

A159324 n! times the average number of comparisons required by an insertion sort of n (distinct) elements.

Original entry on oeis.org

0, 0, 2, 16, 118, 926, 7956, 75132, 777456, 8771184, 107307360, 1416252960, 20068629120, 304002322560, 4903642679040, 83928856838400, 1519397749094400, 29010025797580800, 582647327132774400, 12280347845905305600, 271030782903552000000, 6251213902855219200000
Offset: 0

Views

Author

Harmen Wassenaar (towr(AT)ai.rug.nl), Apr 10 2009

Keywords

Examples

			For n=3, insertion sorting 123, 213, 213, 231, 312, 321 takes 3+3+3+2+3+2 = 4*3+2*2 = 16 comparisons.
		

Crossrefs

Row sums of triangle A159323.

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<2, 0, a(n-1)*n + (n-1)! * (n-1)*(n+2)/2)
        end:
    seq(a(n), n=0..30); # Alois P. Heinz, May 14 2012
    # second Maple program:
    a:= proc(n) option remember; `if`(n<3, [0$2, 2][n+1],
          ((2*n^3-n^2-5*n+2)*a(n-1)-(n+2)*(n-1)^3*a(n-2))/((n-2)*(n+1)))
        end:
    seq(a(n), n=0..30); # Alois P. Heinz, Dec 16 2016
  • Mathematica
    a[n_] := n! ((n+1)(n+2)/4 - HarmonicNumber[n] - 1/2); Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 12 2017, after Gary Detlefs *)

Formula

a(n) = a(n-1)*(n) + n! *(n+1)/2 - (n-1)!.
a(n) = Sum_k A159323(n,k) = Sum_k A129178(n,k) * (n(n-1)/2 - k).
a(n) = n!/4 *(n^2+3*n-4*H(n)), where H(n) = Sum_{k=1..n} 1/k. - Gary Detlefs, Sep 02 2010
a(n) = A138772(n+1) - A000254(n). - Gary Detlefs, May 13 2012
a(n) = ((2*n^3-n^2-5*n+2)*a(n-1)-(n+2)*(n-1)^3*a(n-2))/((n-2)*(n+1)) for n>2. - Alois P. Heinz, Dec 16 2016
a(n) = 2 * A285231(n+1). - Alois P. Heinz, Apr 15 2017
Showing 1-2 of 2 results.