cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A285243 Expansion of Product_{k>=1} 1/(1 - k*x^(k^2))^k.

Original entry on oeis.org

1, 1, 1, 1, 5, 5, 5, 5, 17, 26, 26, 26, 58, 94, 94, 94, 190, 298, 352, 352, 608, 896, 1112, 1112, 1752, 2641, 3289, 3559, 5095, 7499, 9227, 10307, 14051, 20111, 25520, 28760, 38843, 53467, 68191, 76831, 102187, 138283, 175543, 202813, 263905, 355220, 445364
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1 - k*x^(k^2))^k, {k,1,nmax}], {x,0,nmax}], x]

Formula

a(n) ~ c * n * 2^(n/4), where
c = 37.4093119651465404809069752821426852731608123... if mod(n,4)=0
c = 37.6275180026872367633343656570058911570800766... if mod(n,4)=1
c = 37.7650387085085950514850376086515488784106690... if mod(n,4)=2
c = 37.4702467422193571732026074780460498930830447... if mod(n,4)=3

A285244 Expansion of Product_{k>=1} (1 + k*x^(k^2)).

Original entry on oeis.org

1, 1, 0, 0, 2, 2, 0, 0, 0, 3, 3, 0, 0, 6, 6, 0, 4, 4, 0, 0, 8, 8, 0, 0, 0, 17, 17, 0, 0, 34, 34, 0, 0, 0, 15, 15, 6, 6, 30, 30, 12, 32, 20, 0, 0, 58, 58, 0, 0, 43, 103, 60, 24, 38, 134, 120, 48, 48, 21, 21, 0, 102, 144, 42, 8, 240, 232, 0, 16, 72, 146, 90, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + k*x^(k^2)), {k,1,nmax}], {x,0,nmax}], x]

A332199 Expansion of Product_{i>=1, j>=1} 1/(1 - i*x^(i*j)).

Original entry on oeis.org

1, 1, 4, 8, 22, 40, 101, 183, 412, 765, 1586, 2899, 5834, 10484, 20199, 36246, 67758, 119837, 219661, 384200, 690164, 1197423, 2114105, 3632088, 6332797, 10779478, 18555115, 31354932, 53385037, 89494901, 150983344, 251284829, 420218575, 694947117, 1152915743, 1894656801
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    m = 35; CoefficientList[Series[Product[1/(1 - i*x^(i*j)), {i, 1, m}, {j, 1, m}], {x, 0, m}], x] (* Amiram Eldar, Aug 23 2020 *)
  • PARI
    N=40; x='x+O('x^N); Vec(1/prod(i=1, N, prod(j=1, N\i, 1-i*x^(i*j))))
    
  • PARI
    N=40; x='x+O('x^N); Vec(1/prod(k=1, N, prod(d=1, k, 1-(k%d==0)*d*x^k)))

Formula

G.f.: Product_{k>0} f(q^k) where f(q) = Product_{i>=1} 1/(1 - i*q^i).
G.f.: Product_{k>0} Product_{d|k} 1/(1 - d*x^k).

A302836 a(n) = [x^n] Product_{k>=1} 1/(1 - n*x^(k^2)).

Original entry on oeis.org

1, 1, 4, 27, 260, 3150, 46872, 825944, 16810048, 387952668, 10010010100, 285526191874, 8921263237056, 303013028232642, 11116057874586840, 438023675344410000, 18451248777413066768, 827408674110381669305, 39353155876513869320412, 1978708139249503877752798
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - n x^k^2), {k, 1, n}], {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ n^n * (1 + 1/n^3 + 1/n^6 + 1/n^8 + 1/n^9 + 1/n^11 + 1/n^12 + 1/n^14 + 2/n^15 + 1/n^16 + 1/n^17 + 2/n^18 + 1/n^19 + 1/n^20 + 2/n^21 + 1/n^22 + 2/n^23 + 4/n^24 + 1/n^25 + 2/n^26 + 4/n^27 + 1/n^28 + 2/n^29 + 5/n^30 + ...), for coefficients see A111178. - Vaclav Kotesovec, Apr 13 2018
Showing 1-4 of 4 results.