A285300 Numbers k such that 3^(k-1) == 2^(k-1) !== 1 (mod k).
65, 133, 529, 793, 1649, 2059, 2321, 4187, 5185, 6305, 6541, 6697, 6817, 7471, 7613, 8113, 10963, 11521, 13213, 13333, 13427, 14701, 14981, 19171, 19201, 19909, 21349, 21667, 22177, 26065, 26467, 32873, 35443, 36569, 37333, 38897, 42121, 42127, 44023, 47081
Offset: 1
Keywords
Examples
2^64 = 18446744073709551616 = 65 * 283796062672454640 + 16 and 3^64 = 3433683820292512484657849089281 = 65 * 52825904927577115148582293681 + 16. Therefore 65 is in the sequence. Note: a(3) = 529 = 23^2 and a(40) = 47081 = 23^2 * 89.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Programs
-
Maple
filter:= proc(n) local t; t:= 3 &^(n-1) mod n; if t = 1 then return false fi; t = 2 &^(n-1) mod n; end proc: select(filter, [seq(i,i=3..10^5,2)]); # Robert Israel, Apr 27 2017
-
Mathematica
Select[Range[2, 10^5], PowerMod[2, # - 1, #] == PowerMod[3, # - 1, #] != 1 &] (* Giovanni Resta, Apr 16 2017 *)
-
PARI
is(n) = Mod(3, n)^(n-1)==2^(n-1) && Mod(2, n)^(n-1)!=1 \\ Felix Fröhlich, Apr 27 2017
Extensions
More terms from Giovanni Resta, Apr 16 2017
Comments