cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285300 Numbers k such that 3^(k-1) == 2^(k-1) !== 1 (mod k).

Original entry on oeis.org

65, 133, 529, 793, 1649, 2059, 2321, 4187, 5185, 6305, 6541, 6697, 6817, 7471, 7613, 8113, 10963, 11521, 13213, 13333, 13427, 14701, 14981, 19171, 19201, 19909, 21349, 21667, 22177, 26065, 26467, 32873, 35443, 36569, 37333, 38897, 42121, 42127, 44023, 47081
Offset: 1

Views

Author

Thomas Ordowski, Apr 16 2017

Keywords

Comments

All terms are odd composite numbers. There are no pseudoprimes to bases 2 or 3 in this sequence.
Are there infinitely many numbers of this kind?
From Max Alekseyev, Apr 16 2017: (Start)
Also, Fermat pseudoprimes base 2/3 that are not Fermat pseudoprimes base 2.
Also, the set difference of A073631 and either of ({1} U A001567), ({1} U A005935), or ({1} U A052155). (End)

Examples

			2^64 = 18446744073709551616 = 65 * 283796062672454640 + 16 and 3^64 = 3433683820292512484657849089281 = 65 * 52825904927577115148582293681 + 16. Therefore 65 is in the sequence.
Note: a(3) = 529 = 23^2 and a(40) = 47081 = 23^2 * 89.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t;
      t:= 3 &^(n-1) mod n;
      if t = 1 then return false fi;
      t = 2 &^(n-1) mod n;
    end proc:
    select(filter, [seq(i,i=3..10^5,2)]); # Robert Israel, Apr 27 2017
  • Mathematica
    Select[Range[2, 10^5], PowerMod[2, # - 1, #] == PowerMod[3, # - 1, #] != 1 &] (* Giovanni Resta, Apr 16 2017 *)
  • PARI
    is(n) = Mod(3, n)^(n-1)==2^(n-1) && Mod(2, n)^(n-1)!=1 \\ Felix Fröhlich, Apr 27 2017

Extensions

More terms from Giovanni Resta, Apr 16 2017