A285319 Squarefree numbers n for which A019565(n) < n and A048675(n) is also squarefree.
66, 129, 130, 258, 514, 1034, 1041, 1042, 2049, 2054, 2055, 2066, 2082, 2114, 4098, 4101, 4102, 4130, 4161, 4162, 4226, 4353, 4354, 4610, 5122, 8193, 8198, 8202, 8205, 8206, 8210, 8211, 8229, 8259, 8706, 9218, 9219, 12291
Offset: 1
Crossrefs
Programs
-
Mathematica
lim = 4000; A019565 = Table[Times @@ Prime@Flatten@Position[#, 1] &@ Reverse@IntegerDigits[n, 2], {n, 1, lim}]; (* From Michael De Vlieger in A019565 *) A048675 = Table[Total[#[[2]]*2^(PrimePi[#[[1]]] - 1) & /@ FactorInteger[n]], {n, 1, lim}]; (* From Jean-François Alcover in A048675 *) Select[Range[lim], A019565[[#]] < # && SquareFreeQ[#] && SquareFreeQ[A048675[[#]]] &] (* Robert Price, Apr 07 2019 *)
-
PARI
allocatemem(2^30); A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ Michel Marcus, Oct 10 2016 isA285319(n) = (issquarefree(n) & (A019565(n) < n) && issquarefree(A048675(n))); n=0; k=0; while(k <= 60, n=n+1; if(isA285319(n),print1(n,", ");k=k+1));
-
Scheme
;; With Antti Karttunen's IntSeq-library. (define A285319 (MATCHING-POS 1 0 (lambda (n) (and (< (A019565 n) n) (not (zero? (A008683 n))) (not (zero? (A008683 (A048675 n))))))))
Comments