cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285319 Squarefree numbers n for which A019565(n) < n and A048675(n) is also squarefree.

Original entry on oeis.org

66, 129, 130, 258, 514, 1034, 1041, 1042, 2049, 2054, 2055, 2066, 2082, 2114, 4098, 4101, 4102, 4130, 4161, 4162, 4226, 4353, 4354, 4610, 5122, 8193, 8198, 8202, 8205, 8206, 8210, 8211, 8229, 8259, 8706, 9218, 9219, 12291
Offset: 1

Views

Author

Antti Karttunen, Apr 18 2017

Keywords

Comments

Any finite cycle in A019565, if such cycles exist at all, must have at least one member that occurs somewhere in this sequence. Furthermore, such a number n should satisfy A019565(n) < n and that A048675(n)^k is squarefree for all k >= 0.

Crossrefs

Subsequence of A285317.
Cf. also A285320 and discussion in A285331 and A285332.

Programs

  • Mathematica
    lim = 4000;
    A019565 = Table[Times @@ Prime@Flatten@Position[#, 1] &@
       Reverse@IntegerDigits[n, 2], {n, 1, lim}]; (* From Michael De Vlieger in A019565 *)
    A048675 = Table[Total[#[[2]]*2^(PrimePi[#[[1]]] - 1) & /@ FactorInteger[n]], {n, 1, lim}]; (* From Jean-François Alcover in A048675 *)
    Select[Range[lim], A019565[[#]] < # && SquareFreeQ[#] &&
    SquareFreeQ[A048675[[#]]] &] (* Robert Price, Apr 07 2019 *)
  • PARI
    allocatemem(2^30);
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ Michel Marcus, Oct 10 2016
    isA285319(n) = (issquarefree(n) & (A019565(n) < n) && issquarefree(A048675(n)));
    n=0; k=0; while(k <= 60, n=n+1; if(isA285319(n),print1(n,", ");k=k+1));
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A285319 (MATCHING-POS 1 0 (lambda (n) (and (< (A019565 n) n) (not (zero? (A008683 n))) (not (zero? (A008683 (A048675 n))))))))