cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285361 The number of tight 3 X n pavings.

Original entry on oeis.org

0, 1, 11, 64, 282, 1071, 3729, 12310, 39296, 122773, 378279, 1154988, 3505542, 10598107, 31957661, 96200098, 289255020, 869075073, 2609845875, 7834779640, 23514823730, 70565441671, 211738266921, 635298685614, 1906063827672, 5718527025901, 17156252164799, 51470098670020
Offset: 0

Views

Author

Don Knuth, Apr 17 2017

Keywords

Comments

Also, zero together with the third row of the square array A285357.

Examples

			For n=2 the 11 solutions are 12|32|44, 12|13|44, 12|33|44, 11|22|34, 11|23|43, 12|13|43, 12|32|42, 12|13|14, 12|32|34, 11|23|24, 11|23|44.
(Use the "interactive illustration" link in A285357 (with n=3!) for a graphic display.)
		

Crossrefs

Programs

  • Magma
    [(1/4)*(3^(n+3)-5*2^(n+4)+4*n^2+26*n+53): n in [0..30]]; // Vincenzo Librandi, Mar 16 2018
  • Maple
    seq((1/4) * (3^(n+3) - 5*2^(n+4) + 4*n^2 + 26*n + 53),n=0..50); # Robert Israel, Mar 15 2018
  • Mathematica
    LinearRecurrence[{8, -24, 34, -23, 6}, {0, 1, 11, 64, 282}, 30] (* Vincenzo Librandi, Mar 16 2018 *)

Formula

a(n) = (1/4) * (3^(n+3) - 5*2^(n+4) + 4*n^2 + 26*n + 53). - Hugo Pfoertner, Mar 14 2018
G.f.: (x+3*x^2)/((1-x)^3*(1-2*x)*(1-3*x)). - Robert Israel, Mar 15 2018

Extensions

a(10) from Hugo Pfoertner, Jan 17 2018
More terms from M. F. Hasler, Jan 21 2018