A285357 Square array read by antidiagonals: T(m,n) = the number of tight m X n pavings (defined below).
1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 26, 64, 26, 1, 1, 57, 282, 282, 57, 1, 1, 120, 1071, 2072, 1071, 120, 1, 1, 247, 3729, 12279, 12279, 3729, 247, 1, 1, 502, 12310, 63858, 106738, 63858, 12310, 502, 1, 1, 1013, 39296, 305464, 781458, 781458, 305464, 39296, 1013, 1
Offset: 1
Examples
There are 1071 tight pavings when m = 3 and n = 5. Two of them have their seven rectangles in the trivial patterns 11111|22222|34567 and 12345|12346|12347; a more interesting example is 11122|34422|35667. The array begins: 1 1 1 1 1 1 1 ... 1 4 11 26 57 120 ... 1 11 64 282 1071 ... 1 26 282 2072 ... 1 57 1071 ... 1 120 ... ...
Links
- Denis Roegel, Table of n, a(n) for n = 1..91 [Antidiagonals n = 1..13; a(51)=781458 corrected by _Georg Fischer_, Jul 30 2020]
- M. F. Hasler, Illustration of initial terms.
- M. F. Hasler, Interactive illustration of T(2,n). (Uses JavaScript.)
- D. E. Knuth (Proposer), Tight m-by-n pavings; Problem 12005, Amer. Math. Monthly 124 (No. 8, Oct. 2017), page 755. Solution in Amer. Math. Monthly 126 (No. 7, July 2019), page 660-664.
- D. E. Knuth, A conjecture that had to be true, Stanford Lecture: Don Knuth's Christmas Tree Lecture 2017.
- Roberto Tauraso, Problem 12005, Proposed solution.
- Konstantin Vladimirov, Generating things, Program naivepavings.cc to enumerate all tight pavings.
Crossrefs
Programs
-
PARI
/* List all 2 X n tight pavings, where 0 = |, 1 = ┥, 2 = ┙, 3 = ┑ */ nxt=[[0,1,2,3],[0],[1,2,3],[1,2,3]]; T2(n,a=0,d=a%10)={if(n>1,concat(apply(t->T2(n-1,a*10+t),nxt[d+1+(!d&&a)])),[a*10+(d>1||!a)])} \\ M. F. Hasler, Jan 20 2018 for(n=1, 20, print1(#T2(n),", ")) \\ gives row T(2,n) - Georg Fischer, Jul 30 2020
Formula
From M. F. Hasler, Jul 30 2020: (Start)
T(1,n) = 1.
T(2,n) = A000295(n+1) = 2^(n+1) - n - 2.
T(3,n) = A285361(n) = (3^(n+3) - 5*2^(n+4) + 4*n^2 + 26*n + 53)/4. (End)
From Roberto Tauraso, Aug 02 2020: (Start)
T(4,n) = A336732(n) = (4^(n+5) + (n-42)*3^(n+4) - 9*(2*n-27)*2^(n+5) - 36*n^3-486*n^2 - 2577*n - 5398)/36.
T(5,n) = A336734(n) = (5^(n+7) + (2*n-66)*4^(n+6) + (16*n^2-1432*n+13164)*3^(n+3) + (303*n-1505)*2^(n+10) + 576*n^4 + 13248*n^3 + 129936*n^2 + 646972*n + 1377903)/576. (End)
Extensions
Edited by M. F. Hasler, Jan 13 2018 and by N. J. A. Sloane, Jan 14 2018
a(29)-a(55) from Hugo Pfoertner, Jan 19 2018
a(51) corrected by Hugo Pfoertner, Jul 29 2020
Comments