A298362
Number of tight m X n pavings as defined in Knuth's A285357 written as triangle T(m,n), m >= 1, 1 <= n <= m.
Original entry on oeis.org
1, 1, 4, 1, 11, 64, 1, 26, 282, 2072, 1, 57, 1071, 12279, 106738, 1, 120, 3729, 63858, 781458, 7743880, 1, 247, 12310, 305464, 5111986, 66679398, 735490024, 1, 502, 39296, 1382648, 30980370, 521083252, 7216122740, 87138728592, 1, 1013, 122773, 6029325, 178047831, 3802292847, 65106398091
Offset: 1
The triangle starts:
================================================================================
m \ n| 1 2 3 4 5 6 7 8 9
-----|--------------------------------------------------------------------------
. 1 | 1
. 2 | 1 4
. 3 | 1 11 64
. 4 | 1 26 282 2072
. 5 | 1 57 1071 12279 106738
. 6 | 1 120 3729 63858 781458 7743880
. 7 | 1 247 12310 305464 5111986 66679398 735490024
. 8 | 1 502 39296 1382648 30980370 521083252 7216122740 87138728592
. 9 | 1 1013 122773 6029325 178047831 3802292847 65106398091 ? ?
. 10 | 1 2036 378279 25628762 985621119 26409556208 ...
Added a number of values in the example table,
Denis Roegel, Feb 24 2018
A298432
a(n) = Sum_{k=0..n-1} T(n-k, k+1) where T(n, k) is the number of tight n X k pavings (defined in A285357).
Original entry on oeis.org
1, 2, 6, 24, 118, 680, 4456, 32512, 260080, 2254464, 20982768, 208142912, 2187336048, 24229170560
Offset: 1
These are the row sums of A285357 if A285357 is written as a triangle:
1;
1, 1;
1, 4, 1;
1, 11, 11, 1;
1, 26, 64, 26, 1;
1, 57, 282, 282, 57, 1;
1, 120, 1071, 2072, 1071, 120, 1;
1, 247, 3729, 12279, 12279, 3729, 247, 1;
1, 502, 12310, 63858, 106738, 63858, 12310, 502, 1;
A298433
a(n) is the number of tight n X n pavings (defined in A285357).
Original entry on oeis.org
1, 4, 64, 2072, 106738, 7743880, 735490024, 87138728592
Offset: 1
A116694
Array read by antidiagonals: number of ways of dividing an n X m rectangle into integer-sided rectangles.
Original entry on oeis.org
1, 2, 2, 4, 8, 4, 8, 34, 34, 8, 16, 148, 322, 148, 16, 32, 650, 3164, 3164, 650, 32, 64, 2864, 31484, 70878, 31484, 2864, 64, 128, 12634, 314662, 1613060, 1613060, 314662, 12634, 128, 256, 55756, 3149674, 36911922, 84231996, 36911922, 3149674, 55756, 256
Offset: 1
Helena Verrill (verrill(AT)math.lsu.edu), Feb 23 2006
Array begins:
1, 2, 4, 8, 16, 32, ...
2, 8, 34, 148, 650, 2864, ...
4, 34, 322, 3164, 31484, 314662, ...
8, 148, 3164, 70878, 1613060, 36911922, ...
16, 650, 31484, 1613060, 84231996, 4427635270, ...
32, 2864, 314662, 36911922, 4427635270, 535236230270, ...
For irreducible or "tight" pavings, see also
A285357.
-
M:= proc(n) option remember; local k; k:= 2^(n-2);
`if`(n=1, Matrix([2]), Matrix(2*k, (i, j)->`if`(i<=k,
`if`(j<=k, M(n-1)[i, j], B(n-1)[i, j-k]),
`if`(j<=k, B(n-1)[i-k, j], 2*M(n-1)[i-k, j-k]))))
end:
B:= proc(n) option remember; local k; k:=2^(n-2);
`if`(n=1, Matrix([1]), Matrix(2*k, (i,j)->`if`(i<=k,
`if`(j<=k, B(n-1)[i, j], B(n-1)[i, j-k]),
`if`(j<=k, B(n-1)[i-k, j], M(n-1)[i-k, j-k]))))
end:
A:= proc(n, m) option remember; `if`(n=0 or m=0, 1, `if`(m>n, A(m, n),
add(i, i=map(rhs, [op(op(2, M(m)^(n-1)))]))))
end:
seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Dec 13 2012
-
M[n_] := M[n] = Module[{k = 2^(n-2)}, If[n == 1, {{2}}, Table[If[i <= k, If[j <= k, M[n-1][[i, j]], B[n-1][[i, j-k]]], If[j <= k, B[n-1][[i-k, j]], 2*M[n-1][[i-k, j-k]]]], {i, 1, 2k}, {j, 1, 2k}]]]; B[n_] := B[n] = Module[{k = 2^(n-2)}, If[n == 1, {{1}}, Table[If[i <= k, If[j <= k, B[n-1][[i, j]], B[n-1][[i, j-k]]], If[j <= k, B[n-1][[i-k, j]], M[n-1][[i-k, j-k]]]], {i, 1, 2k}, {j, 1, 2k}]]]; A[0, 0] = 1; A[n_ , m_ ] /; m>n := A[m, n]; A[n_ , m_ ] :=MatrixPower[M[m], n-1] // Flatten // Total; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Feb 23 2015, after Alois P. Heinz *)
-
A116694(m,n)=#fill(m,n) \\ where fill() below computes all tilings. - M. F. Hasler, Jan 22 2018
fill(m,n,A=matrix(m,n),i=1,X=1,Y=1)={while((Y>n&&X++&&!Y=0)||A[X,Y], X>m&&return([A]); Y++); my(N=n,L=[]); for(x=X,m, A[x,Y]&&break; for(y=Y,N, if(A[x,y],for(j=y,N,for(k=X,x-1,A[k,j]=0));N=y-1;break); for(j=X,x,A[j,y]=i); L=concat(L,fill(m,n,A,i+1,X,y+1))); x
A285361
The number of tight 3 X n pavings.
Original entry on oeis.org
0, 1, 11, 64, 282, 1071, 3729, 12310, 39296, 122773, 378279, 1154988, 3505542, 10598107, 31957661, 96200098, 289255020, 869075073, 2609845875, 7834779640, 23514823730, 70565441671, 211738266921, 635298685614, 1906063827672, 5718527025901, 17156252164799, 51470098670020
Offset: 0
For n=2 the 11 solutions are 12|32|44, 12|13|44, 12|33|44, 11|22|34, 11|23|43, 12|13|43, 12|32|42, 12|13|14, 12|32|34, 11|23|24, 11|23|44.
(Use the "interactive illustration" link in A285357 (with n=3!) for a graphic display.)
- Robert Israel, Table of n, a(n) for n = 0..2092
- D. E. Knuth (Proposer), Problem 12005, Amer. Math. Monthly 124 (No. 8, Oct. 2017), page 755. For solution see op. cit., 126 (No. 7, 2019), 660-664.
- Roberto Tauraso, Problem 12005, Proposed solution.
- Index entries for linear recurrences with constant coefficients, signature (8,-24,34,-23,6).
-
[(1/4)*(3^(n+3)-5*2^(n+4)+4*n^2+26*n+53): n in [0..30]]; // Vincenzo Librandi, Mar 16 2018
-
seq((1/4) * (3^(n+3) - 5*2^(n+4) + 4*n^2 + 26*n + 53),n=0..50); # Robert Israel, Mar 15 2018
-
LinearRecurrence[{8, -24, 34, -23, 6}, {0, 1, 11, 64, 282}, 30] (* Vincenzo Librandi, Mar 16 2018 *)
A336732
The number of tight 4 X n pavings.
Original entry on oeis.org
0, 1, 26, 282, 2072, 12279, 63858, 305464, 1382648, 6029325, 25628762, 107026662, 441439944, 1804904755, 7334032754, 29669499492, 119647095176, 481400350185, 1933747745850, 7758556171570, 31102292517560, 124605486285231, 498987240470066, 1997573938402512
Offset: 0
- D. E. Knuth (Proposer), Problem 12005, Amer. Math. Monthly 124 (No. 8, Oct. 2017), page 755. For the solution see op. cit., 126 (No. 7, 2019), 660-664.
- Roberto Tauraso, Problem 12005, Proposed solution.
- Index entries for linear recurrences with constant coefficients, signature (18,-139,604,-1627,2818,-3141,2176,-852,144).
-
seq((4^(n+5)+(n-42)*3^(n+4)-9*(2*n-27)*2^(n+5)-36*n^3-486*n^2-2577*n-5398)/36,n=0..20);
-
num=(x+8*x^2-47*x^3+6*x^4+104*x^5); den=((1-x)^4*(1-2*x)^2*(1-3*x)^2*(1-4*x)); CoefficientList[Series[num/den,{x,0,20}],x]
A336734
The number of tight 5 X n pavings.
Original entry on oeis.org
0, 1, 57, 1071, 12279, 106738, 781458, 5111986, 30980370, 178047831, 985621119, 5311715977, 28075774881, 146309927344, 754544640000, 3861338821620, 19646614600164, 99532074868285, 502608221035605, 2531829420822835, 12730273358124315, 63919766245452606
Offset: 0
- D. E. Knuth (Proposer), Problem 12005, Amer. Math. Monthly 124 (No. 8, Oct. 2017), page 755. For the solution see op. cit., 126 (No. 7, 2019), 660-664.
- Roberto Tauraso, Problem 12005, Proposed solution.
- Index entries for linear recurrences with constant coefficients, signature (31,-432,3580,-19666,75558,-208736,419600,-613605,644771,-473432,230220,-66528,8640).
A298636
Square array T(m,n) = number of ways to draw m-1 horizontal lines [a(i),b(i)] with 0 <= a(i) < b(i) <= n such that if two lines start or end on the same coordinate, no intermediate line crosses this coordinate (see comments); m, n >= 1.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 6, 9, 1, 1, 10, 36, 23, 1, 1, 15, 100, 181, 53, 1, 1, 21, 225, 845, 775, 115, 1, 1, 28, 441, 2890, 5957, 2956, 241, 1, 1, 36, 784, 8036, 30862, 36148, 10426, 495, 1, 1, 45, 1296, 19278, 122276, 278530, 195934, 34899, 1005, 1, 1, 55, 2025, 41406, 398874, 1560118
Offset: 1
The table starts (cf. "table" link):
1 1 1 1 1 1 1 ...
1 3 6 10 15 21 28 ... (= A000217 = n -> n(n+1)/2)
1 9 36 100 225 441 784 ... (= A000537 = A000217^2)
1 23 181 845 2890 8036 19278...
1 53 775 5957 30862 122276 ...
1 115 2956 36148 ...
...
Column 2 is A183155.
The T(2,3) = 6 drawings are { [0-1], [0-2], [0-3], [1-2], [1-3], [2-3] }.
The T(3,2) = 9 drawings are { [0-1; 0-1], [0-1; 0-2], [0-1; 1-2], [0-2; 0-1], [0-2, 0-2], [0-2; 1-2], [1-2; 0-1], [1-2; 0-2], [1-2; 1-2] }.
The "no line crosses" condition becomes effective only for m > 3. For m = 4, it excludes drawings like, e.g., [0-1; 0-2; 0-1], [0-1; 0-2; 1-2], ...
Therefore, T(4,2) is less than 3*3*3 = 27: The T(4,2) = 23 drawings are:
{ [0-1; 0-1; 0-1], [0-1; 0-1; 0-2], [0-1; 0-2; 0-2], [0-2; 0-1; 0-1],
[0-2; 0-1; 0-2], [0-2; 0-2; 0-1], [0-2; 0-2; 0-2], [0-1; 0-1; 1-2],
[0-2; 0-1; 1-2], [0-2; 0-2; 1-2], [0-1; 1-2; 0-1], [0-1; 1-2; 0-2],
[0-2; 1-2; 0-1], [0-2; 1-2; 0-2], [0-1; 1-2; 1-2], [0-2; 1-2; 1-2],
[1-2; 0-1; 0-1], [1-2; 0-1; 0-2], [1-2; 0-2; 0-2], [1-2; 0-1; 1-2],
[1-2; 1-2; 0-1], [1-2; 1-2; 0-2], [1-2; 1-2; 1-2] }
-
A298636(m, n, show=0, c=0)={ my(S, N, u=vector(m-1,i,1)); forvec(a=vector(m-1, i, [0, n-1]), S=Set(a); N=vector(n-1); for(i=1,#a, a[i] && N[a[i]]=if(N[a[i]],concat(N[a[i]],i),i)); forvec(b=vector(m-1, j, [a[j]+1, n]), S=N; for(i=1,#b, b[i]i || b[r]
Showing 1-8 of 8 results.
Comments