cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A285357 Square array read by antidiagonals: T(m,n) = the number of tight m X n pavings (defined below).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 26, 64, 26, 1, 1, 57, 282, 282, 57, 1, 1, 120, 1071, 2072, 1071, 120, 1, 1, 247, 3729, 12279, 12279, 3729, 247, 1, 1, 502, 12310, 63858, 106738, 63858, 12310, 502, 1, 1, 1013, 39296, 305464, 781458, 781458, 305464, 39296, 1013, 1
Offset: 1

Views

Author

Don Knuth, Apr 17 2017

Keywords

Comments

A tight m X n paving is a dissection of an m X n rectangle into m+n-1 rectangles, having m+1 distinct boundary lines in one dimension and n+1 distinct boundary lines in another.
There's another characterization of tight pavings (cf. the lemma in the solution reference).
The 2nd column are the Eulerian numbers A000295(n+1) = 2^(n+1) - n - 2. The 3rd column/diagonal is given in A285361. - M. F. Hasler, Jan 11 2018
Related to the dissection of rectangles into smaller rectangles, see Knuth's Stanford lecture video. Sequence A116694 gives the number of these dissections. - M. F. Hasler, Jan 22 2018

Examples

			There are 1071 tight pavings when m = 3 and n = 5. Two of them have their seven rectangles in the trivial patterns 11111|22222|34567 and 12345|12346|12347; a more interesting example is 11122|34422|35667.
The array begins:
  1   1    1    1    1    1    1  ...
  1   4   11   26   57  120  ...
  1  11   64  282 1071  ...
  1  26  282 2072  ...
  1  57 1071  ...
  1 120  ...
  ...
		

Crossrefs

Cf. A000295 (m=2), A116694, A285361 (m=3), A298362, A298432 (diagonal sums), A298433 (main diagonal), A336732 (m=4), A336734 (m=5).

Programs

  • PARI
    /* List all 2 X n tight pavings, where 0 = |, 1 = ┥, 2 = ┙, 3 = ┑ */ nxt=[[0,1,2,3],[0],[1,2,3],[1,2,3]]; T2(n,a=0,d=a%10)={if(n>1,concat(apply(t->T2(n-1,a*10+t),nxt[d+1+(!d&&a)])),[a*10+(d>1||!a)])} \\ M. F. Hasler, Jan 20 2018
    for(n=1, 20, print1(#T2(n),", ")) \\ gives row T(2,n) - Georg Fischer, Jul 30 2020

Formula

From M. F. Hasler, Jul 30 2020: (Start)
T(1,n) = 1.
T(2,n) = A000295(n+1) = 2^(n+1) - n - 2.
T(3,n) = A285361(n) = (3^(n+3) - 5*2^(n+4) + 4*n^2 + 26*n + 53)/4. (End)
From Roberto Tauraso, Aug 02 2020: (Start)
T(4,n) = A336732(n) = (4^(n+5) + (n-42)*3^(n+4) - 9*(2*n-27)*2^(n+5) - 36*n^3-486*n^2 - 2577*n - 5398)/36.
T(5,n) = A336734(n) = (5^(n+7) + (2*n-66)*4^(n+6) + (16*n^2-1432*n+13164)*3^(n+3) + (303*n-1505)*2^(n+10) + 576*n^4 + 13248*n^3 + 129936*n^2 + 646972*n + 1377903)/576. (End)

Extensions

Edited by M. F. Hasler, Jan 13 2018 and by N. J. A. Sloane, Jan 14 2018
a(29)-a(55) from Hugo Pfoertner, Jan 19 2018
a(51) corrected by Hugo Pfoertner, Jul 29 2020

A285361 The number of tight 3 X n pavings.

Original entry on oeis.org

0, 1, 11, 64, 282, 1071, 3729, 12310, 39296, 122773, 378279, 1154988, 3505542, 10598107, 31957661, 96200098, 289255020, 869075073, 2609845875, 7834779640, 23514823730, 70565441671, 211738266921, 635298685614, 1906063827672, 5718527025901, 17156252164799, 51470098670020
Offset: 0

Views

Author

Don Knuth, Apr 17 2017

Keywords

Comments

Also, zero together with the third row of the square array A285357.

Examples

			For n=2 the 11 solutions are 12|32|44, 12|13|44, 12|33|44, 11|22|34, 11|23|43, 12|13|43, 12|32|42, 12|13|14, 12|32|34, 11|23|24, 11|23|44.
(Use the "interactive illustration" link in A285357 (with n=3!) for a graphic display.)
		

Crossrefs

Programs

  • Magma
    [(1/4)*(3^(n+3)-5*2^(n+4)+4*n^2+26*n+53): n in [0..30]]; // Vincenzo Librandi, Mar 16 2018
  • Maple
    seq((1/4) * (3^(n+3) - 5*2^(n+4) + 4*n^2 + 26*n + 53),n=0..50); # Robert Israel, Mar 15 2018
  • Mathematica
    LinearRecurrence[{8, -24, 34, -23, 6}, {0, 1, 11, 64, 282}, 30] (* Vincenzo Librandi, Mar 16 2018 *)

Formula

a(n) = (1/4) * (3^(n+3) - 5*2^(n+4) + 4*n^2 + 26*n + 53). - Hugo Pfoertner, Mar 14 2018
G.f.: (x+3*x^2)/((1-x)^3*(1-2*x)*(1-3*x)). - Robert Israel, Mar 15 2018

Extensions

a(10) from Hugo Pfoertner, Jan 17 2018
More terms from M. F. Hasler, Jan 21 2018

A298432 a(n) = Sum_{k=0..n-1} T(n-k, k+1) where T(n, k) is the number of tight n X k pavings (defined in A285357).

Original entry on oeis.org

1, 2, 6, 24, 118, 680, 4456, 32512, 260080, 2254464, 20982768, 208142912, 2187336048, 24229170560
Offset: 1

Views

Author

Peter Luschny, Jan 19 2018

Keywords

Examples

			These are the row sums of A285357 if A285357 is written as a triangle:
1;
1,   1;
1,   4,     1;
1,  11,    11,     1;
1,  26,    64,    26,      1;
1,  57,   282,   282,     57,     1;
1, 120,  1071,  2072,   1071,   120,     1;
1, 247,  3729, 12279,  12279,  3729,   247,   1;
1, 502, 12310, 63858, 106738, 63858, 12310, 502, 1;
		

Crossrefs

Extensions

a(11) from Hugo Pfoertner, Jan 19 2018
a(12)-a(14) from Denis Roegel, Feb 24 2018

A298433 a(n) is the number of tight n X n pavings (defined in A285357).

Original entry on oeis.org

1, 4, 64, 2072, 106738, 7743880, 735490024, 87138728592
Offset: 1

Views

Author

Peter Luschny, Jan 19 2018

Keywords

Crossrefs

Formula

a(n) = A285357(n,n).

Extensions

a(6) from Hugo Pfoertner, Jan 19 2018
a(7) from Denis Roegel, Feb 23 2018
a(8) from Denis Roegel, Feb 24 2018
Showing 1-4 of 4 results.