cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Denis Roegel

Denis Roegel's wiki page.

Denis Roegel has authored 2 sequences.

A335257 Numerators of expansion of arctanh(tan(x)) (odd powers only).

Original entry on oeis.org

1, 2, 2, 244, 554, 202084, 166324, 1594887848, 456270874, 9619518701764, 59259390118004, 554790995145103208, 954740563911205348, 32696580074344991138888, 3636325637469705598456, 7064702291984369672858925136, 4176926860695042104392112698
Offset: 1

Author

Denis Roegel, May 28 2020

Keywords

Comments

The numerators of a series used by Johann Heinrich Lambert (1728-1777) in expressing the relationship between a circular sector and a hyperbolic sector.

Examples

			arctan(tanh(x)) = x - 2/3*x^3 + 2/3*x^5 - 244/315*x^7 + 554/567*x^9 ...
arctanh(tan(x)) = x + 2/3*x^3 + 2/3*x^5 + 244/315*x^7 + 554/567*x^9 ...
		

Crossrefs

Cf. A002436, A335258 (denominators).

Programs

  • Mathematica
    Numerator @ CoefficientList[Series[ArcTanh[Tan[x]], {x, 0, 34}], x][[2 ;; -1 ;; 2]] (* Amiram Eldar, May 30 2020 *)
  • PARI
    a(n)={numerator((-1)^(n-1)*(polcoef(atan(tanh(x + O(x^(2*n)))), 2*n-1)))} \\ Andrew Howroyd, May 29 2020

Formula

a(n)/A335258(n) = A002436(n-1)/(2*n-1)!. - Andrew Howroyd, May 29 2020

Extensions

Terms a(9) and beyond from Andrew Howroyd, May 29 2020

A335258 Denominators of expansion of arctanh(tan(x)) (odd powers only).

Original entry on oeis.org

1, 3, 3, 315, 567, 155925, 93555, 638512875, 127702575, 1856156927625, 7795859096025, 49308808782358125, 56894779364259375, 1298054391195577640625, 95646113035463615625, 122529844256906551386796875, 47570410123269602303109375, 2405873491984360136479756640625
Offset: 1

Author

Denis Roegel, May 28 2020

Keywords

Comments

The denominators of a series used by Johann Heinrich Lambert (1728-1777) in expressing the relationship between a circular sector and a hyperbolic sector.
Lambert gave a(1)-a(4).

Examples

			arctan(tanh(x)) = x - 2/3*x^3 + 2/3*x^5 - 244/315*x^7 + 554/567*x^9 ...
arctanh(tan(x)) = x + 2/3*x^3 + 2/3*x^5 + 244/315*x^7 + 554/567*x^9 ...
		

References

  • Johann Heinrich Lambert: ``Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques,'' Histoire de l'Académie Royale des Sciences et Belles-Lettres, 1761, volume XVII, Berlin, 1768, pp. 265-322.

Crossrefs

Cf. A335257.

Programs

  • Mathematica
    Denominator @ CoefficientList[ Series[ArcTanh[Tan[x]], {x, 0, 36}], x][[2 ;; -1 ;; 2]] (* Amiram Eldar, Jun 04 2020 *)
  • PARI
    my(x='x+O('x^40), v=Vec(atanh(tan(x)))); apply(denominator, vector(#v\2, k, v[2*k-1])) \\ Michel Marcus, Jun 05 2020