cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285406 Base-2 logarithm of denominator of Sum_{k=0..n^2-1} (-1)^k*sqrt(Pi)/(Gamma(1/2-k)*Gamma(1+k)*n).

Original entry on oeis.org

0, 5, 15, 28, 46, 68, 94, 123, 158, 195, 236, 283, 333, 387, 445, 506, 574, 643, 716, 794, 875, 961, 1054, 1146, 1244, 1346, 1451, 1562, 1676, 1794, 1916, 2041, 2174, 2307, 2444, 2586, 2731, 2881, 3034, 3193, 3356, 3520, 3690, 3864, 4041, 4227, 4413, 4601, 4796, 4993
Offset: 1

Views

Author

Ralf Steiner, Apr 18 2017

Keywords

Comments

Needed for studying of Wallis-kind products of central binomials.

Crossrefs

Programs

  • Mathematica
    Log[2,Table[Denominator[Sum[Binomial[2k,k]/4^k,{k,0,n^2-1}]/n], {n,1,50}]]
    Log[2,Denominator[Table[2^(1-2 n^2) n Binomial[2 n^2,n^2],{n,1,50}]]] (* Ralf Steiner, Apr 22 2017 *)
  • PARI
    a(n) = logint(denominator((2^(1 - 2*(n^2)))*n*binomial(2*(n^2), n^2)), 2); \\ Indranil Ghosh, Apr 27 2017
    
  • PARI
    val(n, p) = my(r=0); while(n, r+=n\=p);r
    a(n) = 2*n^2-1 - valuation(n, 2) - val(2*n^2, 2) + 2*val(n^2, 2) \\ David A. Corneth, Apr 28 2017
    
  • Python
    from sympy import binomial, integer_log, Integer
    def a(n): return integer_log((Integer(2)**(1 - 2*n**2)*n*binomial(2*n**2, n**2)).denominator, 2)[0] # Indranil Ghosh, Apr 27 2017
    
  • Scheme
    (define (A285406 n) (- (* 2 n n) (A007814 n) (A000120 (* n n)) 1)) ;; Antti Karttunen, Apr 28 2017

Formula

a(n) = A000523(A285389(n)).
a(n) = A056220(n) - A285717(n) = (2*(n^2)) - A007814(n) - A000120(n^2) - 1. - Antti Karttunen, Apr 28 2017, based on Vladimir Shevelev's Jul 20 2009 formula in A000984