A285470 Numbers k where "2" appears as the second digit of the decimal representation.
12, 22, 32, 42, 52, 62, 72, 82, 92, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 620, 621, 622, 623, 624, 625, 626, 627
Offset: 1
Examples
a(21) = 221, a(36) = 326. As the first digit of 983 is 9, and the others are 83, a(983) = 9283. - _David A. Corneth_, Jun 12 2017
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Maple
seq(seq(seq(a*10^d + 2*10^(d-1)+c, c=0..10^(d-1)-1),a=1..9),d=1..2); # Robert Israel, Jun 12 2017
-
Mathematica
Table[FromDigits@ Apply[Join, {{First@ #}, {2}, Rest@ #}] &@ IntegerDigits@ n, {n, 67}] (* Michael De Vlieger, Jun 12 2017 *) Select[Range[700],NumberDigit[#,IntegerLength[#]-2]==2&] (* Harvey P. Dale, Aug 15 2025 *)
-
PARI
isok(n) = (n>9) && digits(n)[2] == 2; \\ Michel Marcus, Jun 12 2017
-
PARI
a(n) = my(d = digits(n)); fromdigits(concat([d[1], [2], vector(#d-1, i, d[i+1])])) \\ David A. Corneth, Jun 12 2017
-
PARI
nxt(n) = if(isok(n+1), n+1, d = digits(n); t = 9*10^(#d-2); if(d[1]==9,t*=3); n+=t++) \\ David A. Corneth, Jun 12 2017
-
Python
def a(n): s = str(n); return int(s[0] + "2" + s[1:]) print([a(n) for n in range(1, 68)]) # Michael S. Branicky, Dec 22 2021
Formula
From Robert Israel, Jun 12 2017: (Start)
a(10*n+j) = 10*a(n)+j for 0<=j<=9 and n >= 1.
G.f. g(x) satisfies g(x) = 10*(1-x^10)*g(x^10)/(1-x) + (x + 2*x + ... + 9*x^9)*x^10/(1-x^10) + 12*x + 22*x^2 + ... + 92*x^9. (End)
Comments