cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285470 Numbers k where "2" appears as the second digit of the decimal representation.

Original entry on oeis.org

12, 22, 32, 42, 52, 62, 72, 82, 92, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 620, 621, 622, 623, 624, 625, 626, 627
Offset: 1

Views

Author

Jamie Robert Creasey, Apr 19 2017

Keywords

Comments

To find a(n), concatenate the first digit of n with 2 and then the other digits (if any) from n. See example. - David A. Corneth, Jun 12 2017

Examples

			a(21) = 221, a(36) = 326.
As the first digit of 983 is 9, and the others are 83, a(983) = 9283. - _David A. Corneth_, Jun 12 2017
		

Crossrefs

Cf. A011532 (containing 2), A052404 (without 2), A217394 (starting with 2).

Programs

  • Maple
    seq(seq(seq(a*10^d + 2*10^(d-1)+c, c=0..10^(d-1)-1),a=1..9),d=1..2); # Robert Israel, Jun 12 2017
  • Mathematica
    Table[FromDigits@ Apply[Join, {{First@ #}, {2}, Rest@ #}] &@ IntegerDigits@ n, {n, 67}] (* Michael De Vlieger, Jun 12 2017 *)
    Select[Range[700],NumberDigit[#,IntegerLength[#]-2]==2&] (* Harvey P. Dale, Aug 15 2025 *)
  • PARI
    isok(n) = (n>9) && digits(n)[2] == 2; \\ Michel Marcus, Jun 12 2017
    
  • PARI
    a(n) = my(d = digits(n)); fromdigits(concat([d[1], [2], vector(#d-1, i, d[i+1])])) \\ David A. Corneth, Jun 12 2017
    
  • PARI
    nxt(n) = if(isok(n+1), n+1, d = digits(n); t = 9*10^(#d-2); if(d[1]==9,t*=3); n+=t++) \\ David A. Corneth, Jun 12 2017
    
  • Python
    def a(n): s = str(n); return int(s[0] + "2" + s[1:])
    print([a(n) for n in range(1, 68)]) # Michael S. Branicky, Dec 22 2021

Formula

From Robert Israel, Jun 12 2017: (Start)
a(10*n+j) = 10*a(n)+j for 0<=j<=9 and n >= 1.
G.f. g(x) satisfies g(x) = 10*(1-x^10)*g(x^10)/(1-x) + (x + 2*x + ... + 9*x^9)*x^10/(1-x^10) + 12*x + 22*x^2 + ... + 92*x^9. (End)