cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285529 Triangle read by rows: T(n,k) is the number of nodes of degree k counted over all simple labeled graphs on n nodes, n>=1, 0<=k<=n-1.

Original entry on oeis.org

1, 2, 2, 6, 12, 6, 32, 96, 96, 32, 320, 1280, 1920, 1280, 320, 6144, 30720, 61440, 61440, 30720, 6144, 229376, 1376256, 3440640, 4587520, 3440640, 1376256, 229376, 16777216, 117440512, 352321536, 587202560, 587202560, 352321536, 117440512, 16777216
Offset: 1

Views

Author

Geoffrey Critzer, Apr 20 2017

Keywords

Examples

			1,
2,   2,
6,   12,   6,
32,  96,   96,   32,
320, 1280, 1920, 1280, 320,
...
		

Crossrefs

Row sums give A095340.
Columns for k=0-3: A123903, A095338, A038094, A038096.

Programs

  • Mathematica
    nn = 9; Map[Select[#, # > 0 &] &,
      Drop[Transpose[Table[A[z_] := Sum[Binomial[n, k] 2^Binomial[n, 2] z^n/n!, {n, 0, nn}];Range[0, nn]! CoefficientList[Series[z A[z], {z, 0, nn}], z], {k,0, nn - 1}]], 1]] // Grid

Formula

E.g.f. for column k: x * Sum_{n>=0} binomial(n,k)*2^binomial(n,2)*x^n/n!.
Sum_{k=1..n-1} T(n,k)*k/2 = A095351(n).
T(n,k) = n*binomial(n-1,k)*2^binomial(n-1,2). - Alois P. Heinz, Apr 21 2017