A238005
Number of partitions of n into distinct parts such that (greatest part) - (least part) = (number of parts).
Original entry on oeis.org
0, 0, 0, 1, 0, 1, 1, 2, 0, 2, 2, 2, 2, 2, 1, 4, 3, 2, 3, 3, 2, 4, 4, 4, 3, 4, 2, 5, 5, 3, 5, 6, 3, 5, 3, 5, 6, 6, 4, 6, 6, 4, 6, 6, 3, 7, 7, 7, 6, 6, 5, 7, 7, 5, 6, 8, 6, 8, 8, 6, 8, 8, 4, 9, 6, 7, 9, 9, 7, 7, 9, 8, 9, 9, 5, 9, 7, 8, 10, 10
Offset: 1
a(8) = 2 counts these partitions: 53, 431.
a(n) is also the number of zeros in the n-th row of the triangles
A196020,
A211343,
A231345,
A236106,
A237048 (simpler),
A239662,
A261699,
A271344,
A272026,
A280850,
A285574,
A285891,
A285914,
A286013,
A296508 (and possibly others).
Omar E. Pol, Feb 17 2018
-
z = 70; q[n_] := q[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; p1[p_] := p1[p] = DeleteDuplicates[p]; t[p_] := t[p] = Length[p1[p]];
Table[Count[q[n], p_ /; Max[p] - Min[p] < t[p]], {n, z}] (* A001227 *)
Table[Count[q[n], p_ /; Max[p] - Min[p] <= t[p]], {n, z}] (* A003056 *)
Table[Count[q[n], p_ /; Max[p] - Min[p] == t[p]], {n, z}] (* A238005 *)
Table[Count[q[n], p_ /; Max[p] - Min[p] > t[p]], {n, z}] (* A238006 *)
Table[Count[q[n], p_ /; Max[p] - Min[p] >= t[p]], {n, z}] (* A238007 *)
{0}~Join~Array[Floor[(Sqrt[1 + 8 #] - 1)/2] - DivisorSum[#, 1 &, OddQ] &, 102] (* Michael De Vlieger, Feb 18 2018 *)
-
a(n) = if (n, (sqrtint(8*n+1)-1)\2 - sumdiv(n, d, d%2), 0); \\ Michel Marcus, Mar 01 2018
A352425
Irregular triangle read by rows in which row n lists the partitions of n into an odd number of consecutive parts.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 3, 2, 1, 7, 8, 9, 4, 3, 2, 10, 11, 12, 5, 4, 3, 13, 14, 15, 6, 5, 4, 5, 4, 3, 2, 1, 16, 17, 18, 7, 6, 5, 19, 20, 6, 5, 4, 3, 2, 21, 8, 7, 6, 22, 23, 24, 9, 8, 7, 25, 7, 6, 5, 4, 3, 26, 27, 10, 9, 8, 28, 7, 6, 5, 4, 3, 2, 1, 29, 30, 11, 10, 9, 8, 7, 6, 5, 4
Offset: 1
Triangle begins:
[1];
[2];
[3],
[4];
[5];
[6], [3, 2, 1];
[7];
[8];
[9], [4, 3, 2];
[10];
[11];
[12], [5, 4, 3];
[13];
[14];
[15], [6, 5, 4], [5, 4, 3, 2, 1];
[16];
[17];
[18], [7, 6, 5];
[19];
[20], [6, 5, 4, 3, 2];
[21], [8, 7, 6];
[22];
[23];
[24], [9, 8, 7];
[25], [7, 6, 5, 4, 3];
[26];
[27], [10, 9, 8];
[28], [7, 6, 5, 4, 3, 2, 1];
...
In the diagram below the m-th staircase walk starts at row A000384(m).
The number of horizontal line segments in the n-th row equals A082647(n), the number of partitions of n into an odd number of consecutive parts, so we can find such partitions as follows: consider the vertical blocks of numbers that start exactly in the n-th row of the diagram, for example: for n = 15 consider the vertical blocks of numbers that start exactly in the 15th row. They are [15], [6, 5, 4]. [5, 4, 3, 2, 1], equaling the 15th row of the above triangle.
_
_|1|
_|2 |
_|3 |
_|4 |
_|5 _|
_|6 |3|
_|7 |2|
_|8 _|1|
_|9 |4 |
_|10 |3 |
_|11 _|2 |
_|12 |5 |
_|13 |4 |
_|14 _|3 _|
_|15 |6 |5|
_|16 |5 |4|
_|17 _|4 |3|
_|18 |7 |2|
_|19 |6 _|1|
_|20 _|5 |6 |
_|21 |8 |5 |
_|22 |7 |4 |
_|23 _|6 |3 |
_|24 |9 _|2 |
_|25 |8 |7 |
_|26 _|7 |6 |
_|27 |10 |5 _|
|28 |9 |4 |7|
...
The diagram is infinite.
For more information about the diagram see A286000.
Row n contains
A082647(n) of the mentioned partitions.
Cf.
A000384,
A003056,
A067742,
A204217,
A237048,
A237591,
A237593,
A240542,
A245092,
A285574,
A285901,
A286000,
A286001,
A320051,
A320137,
A320142,
A341309,
A351824.
A347737
Zero together with the partial sums of A238005.
Original entry on oeis.org
0, 0, 0, 0, 1, 1, 2, 3, 5, 5, 7, 9, 11, 13, 15, 16, 20, 23, 25, 28, 31, 33, 37, 41, 45, 48, 52, 54, 59, 64, 67, 72, 78, 81, 86, 89, 94, 100, 106, 110, 116, 122, 126, 132, 138, 141, 148, 155, 162, 168, 174, 179, 186, 193, 198, 204, 212, 218, 226, 234, 240, 248, 256, 260
Offset: 0
a(n) is also the total number of zeros in the first n rows of the triangles
A196020,
A211343,
A231345,
A236106,
A237048 (simpler),
A239662,
A261699,
A271344,
A272026,
A280850,
A285574,
A285891,
A285914,
A286013,
A296508 (and possibly others), n >= 1.
-
Accumulate@Table[Length@Select[Select[IntegerPartitions@n,DuplicateFreeQ],Differences@MinMax@#=={Length@#}&],{n,60}] (* Giorgos Kalogeropoulos, Sep 12 2021 *)
-
from math import isqrt
def A347737(n): return (r:=isqrt((n+1<<3)+1)-1>>1)*(6*n+4-r*(r+3))//6-((t:=isqrt(m:=n>>1))+(s:=isqrt(n)))*(t-s)-(sum(n//k for k in range(1,s+1))-sum(m//k for k in range(1,t+1))<<1) # Chai Wah Wu, Jun 07 2025
Showing 1-3 of 3 results.
Comments