A327802 Number of primes p such that n < p < (9/8) * n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 1, 1, 1, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3
Offset: 1
Keywords
Examples
9/8 * 17 = 19.125 and between 17 and 19.125, only 19 is a prime hence a(17) = 1. 9/8 * 39 = 43.875, and between 39 and 43.875, there are 41 and 43 that are primes hence a(39) = 2.
References
- François Le Lionnais, Jean Brette, Les Nombres remarquables, Hermann, 1983, nombre 48, page 46.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Revised Edition), Penguin Books, 1997, entry 48, page 106.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
- Robert Breusch, Zur Verallgemeinerung des Bertrandschen Postulates, daß zwischen x und 2x stets Primzahlen liegen, Mathematische Zeitschrift (in German), December 1932, Volume 34, Issue 1, pp 505-526
- Wikipedia, Robert Breusch
Programs
-
Mathematica
Table[PrimePi[(9/8)*n] - PrimePi[n], {n, 1, 80}] (* Metin Sariyar, Sep 26 2019 *)
Formula
a(n) = pi(ceiling(9*n/8)-1) - pi(n), pi = A000720. - Alois P. Heinz, Sep 25 2019
Comments