cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A285585 Expansion of r(q^5) / r(q)^5 in powers of q where r() is the Rogers-Ramanujan continued fraction.

Original entry on oeis.org

1, 5, 10, 5, -15, -25, 10, 60, 25, -110, -150, 85, 360, 155, -505, -675, 330, 1410, 555, -1925, -2450, 1210, 4920, 1930, -6275, -7875, 3710, 15000, 5720, -18575, -22800, 10735, 42310, 15960, -50605, -61400, 28280, 110610, 41100, -129570, -155250, 71060, 274320
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2017

Keywords

Comments

G.f. A(q) satisfies: A(q) = v / u^5 = (v^4 + 2*v^3 + 4*v^2 + 3*v + 1) / (v^4 - 3*v^3 + 4*v^2 - 2*v + 1), where u = r(q) and v = r(q^5).

Crossrefs

r(q^k) / r(q)^k: A285348 (k=2), A285583 (k=3), A285584 (k=4), this sequence (k=5).
Cf. A078905 (u^5), A229793 (1 / u^5), A285587, A285630.

A285630 Expansion of r(q)^5 / r(q^5) in powers of q where r() is the Rogers-Ramanujan continued fraction.

Original entry on oeis.org

1, -5, 15, -30, 40, -25, -35, 140, -250, 285, -150, -210, 740, -1230, 1330, -675, -880, 3015, -4830, 5025, -2450, -3135, 10380, -16180, 16450, -7875, -9785, 31850, -48720, 48600, -22800, -27985, 89465, -134760, 132530, -61400, -74205, 234515, -349000, 339145
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2017

Keywords

Comments

G.f. A(q) satisfies: A(q) = u^5 / v = (v^4 - 3*v^3 + 4*v^2 - 2*v + 1) / (v^4 + 2*v^3 + 4*v^2 + 3*v + 1), where u = r(q) and v = r(q^5).

Crossrefs

r(q)^k / r(q^k): A285349 (k=2), A285628 (k=3), A285629 (k=4), this sequence (k=5).
Cf. A078905 (u^5), A229793 (1 / u^5), A285585, A285587.
Showing 1-2 of 2 results.