A285731 Transpose of square array A285730.
1, 2, 1, 3, 2, 1, 2, 3, 2, 1, 5, 4, 3, 2, 1, 3, 5, 4, 3, 2, 1, 7, 6, 5, 4, 3, 2, 1, 2, 7, 6, 5, 4, 3, 2, 1, 3, 4, 7, 6, 5, 4, 3, 2, 1, 5, 9, 8, 7, 6, 5, 4, 3, 2, 1, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 3, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 13, 6, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 7, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
Offset: 1
Examples
The top left 25 x 4 corner of the array: 1 2 3 2 5 3 7 2 3 5 11 3 13 7 5 2 17 3 19 5 7 11 23 3 5 1 2 3 4 5 6 7 4 9 10 11 6 13 14 15 4 17 9 19 10 21 22 23 6 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 8 17 18 19 20 21 22 23 12 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Links
Programs
-
Mathematica
With[{nn = 14}, Function[s, Table[s[[n, #]] &[k - n + 1], {k, nn}, {n, k, 1, -1}]]@ MapIndexed[PadRight[#1, nn, First@ #2] &, Table[FoldList[Times, Reverse@ Flatten[FactorInteger[n] /. {p_, e_} /; e > 0 :> ConstantArray[p, e]]], {n, nn}]]] // Flatten (* Michael De Vlieger, Apr 28 2017 *)
-
Python
from sympy import primefactors def a006530(n): return 1 if n==1 else max(primefactors(n)) def A(n, k): return a006530(n) if k==1 else a006530(n)*A(n//a006530(n), k - 1) for n in range(1, 21): print([A(n - k + 1, k) for k in range(1, n + 1)]) # Indranil Ghosh, Apr 28 2017
-
Scheme
(define (A285731 n) (A285730bi (A004736 n) (A002260 n))) ;; For A285730bi see A285730.
Comments