A321346 Number of integer partitions of n containing no prime powers > 1.
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 5, 5, 6, 7, 8, 8, 11, 11, 14, 16, 19, 19, 25, 26, 31, 34, 40, 41, 52, 54, 63, 69, 81, 86, 105, 109, 126, 137, 160, 169, 201, 211, 242, 264, 303, 320, 375, 396, 453, 490, 557, 590, 682, 726, 823, 888, 1002, 1065, 1219
Offset: 0
Keywords
Examples
The a(20) = 14 integer partitions: (20) (10,10) (14,6) (18,1,1) (12,6,1,1) (6,6,6,1,1) (10,6,1,1,1,1) (15,1,1,1,1,1) (14,1,1,1,1,1,1) (12,1,1,1,1,1,1,1,1) (6,6,1,1,1,1,1,1,1,1) (10,1,1,1,1,1,1,1,1,1,1) (6,1,1,1,1,1,1,1,1,1,1,1,1,1,1) (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..350
Crossrefs
Programs
-
Mathematica
nn=100; ser=Product[If[PrimePowerQ[n],1,1/(1-x^n)],{n,nn}]; CoefficientList[Series[ser,{x,0,nn}],x]
Comments