cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A286531 Restricted growth sequence of A278531 (prime-signature of A163511).

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 5, 2, 6, 4, 7, 3, 7, 5, 5, 2, 8, 6, 9, 4, 10, 7, 7, 3, 9, 7, 11, 5, 7, 5, 5, 2, 12, 8, 13, 6, 14, 9, 9, 4, 14, 10, 15, 7, 10, 7, 7, 3, 13, 9, 15, 7, 15, 11, 11, 5, 9, 7, 11, 5, 7, 5, 5, 2, 16, 12, 17, 8, 18, 13, 13, 6, 19, 14, 20, 9, 14, 9, 9, 4, 18, 14, 21, 10, 21, 15, 15, 7, 14, 10, 15, 7, 10, 7, 7, 3, 17, 13, 20, 9, 21, 15, 15, 7, 20, 15
Offset: 0

Views

Author

Antti Karttunen, May 17 2017

Keywords

Crossrefs

Programs

  • PARI
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of M. F. Hasler
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A278222(n) = A046523(A005940(1+n));
    A054429(n) = ((3<<#binary(n\2))-n-1); \\ After M. F. Hasler, Aug 18 2014
    A278531(n) = if(!n,1,A278222(A054429(n)));
    write_to_bfile(0,rgs_transform(vector(65538,n,A278531(n-1))),"b286531.txt");

A286218 Number of partitions of n into parts with an odd number of prime divisors (counted with multiplicity).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 3, 4, 4, 6, 7, 9, 11, 13, 16, 19, 23, 28, 33, 40, 46, 55, 65, 76, 89, 104, 121, 141, 163, 190, 219, 253, 290, 334, 383, 439, 502, 573, 653, 744, 845, 961, 1089, 1234, 1395, 1576, 1780, 2007, 2259, 2544, 2856, 3209, 3598, 4033, 4516, 5051, 5644, 6304, 7033, 7843
Offset: 0

Views

Author

Ilya Gutkovskiy, May 04 2017

Keywords

Examples

			a(8) = 4 because we have [8], [5, 3], [3, 3, 2] and [2, 2, 2, 2].
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
          `if`(bigomega(d)::odd, d, 0), d=divisors(j)), j=1..n)/n)
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, May 04 2017
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1 - Boole[OddQ[PrimeOmega[k]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^A026424(k)).

A286223 Number of partitions of n into distinct parts with an even number of prime divisors (counted with multiplicity).

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 3, 2, 0, 1, 3, 4, 4, 2, 1, 4, 6, 5, 4, 4, 6, 10, 10, 6, 6, 10, 13, 14, 11, 9, 14, 21, 21, 17, 17, 23, 31, 31, 25, 25, 33, 41, 43, 39, 38, 50, 61, 60, 56, 58, 68, 83, 87, 79, 82, 99, 115, 121, 118, 118, 139, 163, 164, 157, 165, 189, 216, 228, 221, 229, 265, 296
Offset: 0

Views

Author

Ilya Gutkovskiy, May 04 2017

Keywords

Examples

			a(10) = 3 because we have [10], [9, 1] and [6, 4].
		

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Product[1 + Boole[EvenQ[PrimeOmega[k]]] x^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A028260(k)).

A286227 Number of compositions (ordered partitions) of n into parts with an even number of prime divisors (counted with multiplicity).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 7, 10, 15, 24, 36, 53, 78, 118, 179, 271, 405, 605, 907, 1366, 2055, 3086, 4628, 6948, 10440, 15689, 23560, 35371, 53110, 79771, 119821, 179958, 270243, 405833, 609495, 915394, 1374780, 2064647, 3100680, 4656676, 6993575, 10503180, 15773877, 23689467, 35577360
Offset: 0

Views

Author

Ilya Gutkovskiy, May 04 2017

Keywords

Examples

			a(6) = 5 because we have [6], [4, 1, 1], [1, 4, 1], [1, 1, 4] and [1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[1/(1 - Sum[Boole[EvenQ[PrimeOmega[k]]] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=1} x^A028260(k)).
Showing 1-4 of 4 results.