A285933 a(n) = smallest k such that (6*k-3)*2^n-1 and (6*k-3)*2^n+1 are twin primes.
1, 1, 2, 3, 14, 1, 2, 10, 8, 3, 17, 28, 62, 8, 58, 20, 64, 1, 12, 75, 14, 6, 197, 41, 128, 63, 14, 65, 8, 58, 114, 98, 63, 45, 124, 36, 72, 516, 28, 45, 43, 183, 2, 25, 142, 68, 249, 30, 324, 155, 188, 200, 334, 56, 87, 178, 98, 110, 22, 25, 24, 70, 2, 271, 17, 498, 412, 750, 877
Offset: 1
Keywords
Examples
(6*1-3)*2^1-1 = 5, (6*1-3)*2^1+1 = 7; 5 and 7 are twin primes so a(1) = 1. (6*1-3)*2^2-1 = 11, (6*1-3)*2^2+1 = 13; 11 and 13 are twin primes so a(2) = 1.
Links
- Pierre CAMI, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A285808.
Programs
-
Mathematica
Table[k = 1; While[Times @@ Boole@ PrimeQ[(6 k - 3) 2^n + {-1, 1}] < 1, k++]; k, {n, 69}] (* Michael De Vlieger, May 04 2017 *)
-
PARI
a(n) = {my(k=1); while (!isprime((6*k-3)*2^n-1) || !isprime((6*k-3)*2^n+1), k++); k;} \\ Michel Marcus, May 01 2017
Comments