A285895 Sum of divisors d of n such that n/d is not congruent to 0 mod 4.
1, 3, 4, 6, 6, 12, 8, 12, 13, 18, 12, 24, 14, 24, 24, 24, 18, 39, 20, 36, 32, 36, 24, 48, 31, 42, 40, 48, 30, 72, 32, 48, 48, 54, 48, 78, 38, 60, 56, 72, 42, 96, 44, 72, 78, 72, 48, 96, 57, 93, 72, 84, 54, 120, 72, 96, 80, 90, 60, 144, 62, 96, 104, 96, 84, 144, 68
Offset: 1
Examples
The divisors of 8 are 1, 2, 4, and 8. 8/1 == 0 (mod 4) and 8/2 == 0 (mod 4). Hence, a(8) = 4 + 8 = 12.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := If[p == 2, 3*2^(e-1), (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 30 2022 *)
-
PARI
a(n)=sumdiv(n, d, if(n/d%4, d, 0)); \\ Andrew Howroyd, Jul 20 2018
Formula
G.f.: Sum_{k>=1} k*x^k*(1 + x^k + x^(2*k))/(1 - x^(4*k)). - Ilya Gutkovskiy, Sep 12 2019
a(n) = A050460(n) + A002131(n/2) + A050464(n), where A002131(.)=0 for non-integer argument. - R. J. Mathar, May 25 2020
From Amiram Eldar, Oct 30 2022: (Start)
Multiplicative with a(2^e) = 3*2^(e-1) and a(p^e) = (p^(e+1)-1)/(p-1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 5*Pi^2/64 = 0.7710628... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-1/4^s). - Amiram Eldar, Dec 30 2022