A285989
a(0) = 0, a(n) = Sum_{0 0.
0, 1, 16, 82, 256, 626, 1312, 2402, 4096, 6643, 10016, 14642, 20992, 28562, 38432, 51332, 65536, 83522, 106288, 130322, 160256, 196964, 234272, 279842, 335872, 391251, 456992, 538084, 614912, 707282, 821312, 923522, 1048576, 1200644, 1336352, 1503652, 1700608
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Index entries for sequences mentioned by Glaisher.
Crossrefs
Programs
-
Maple
f:= n -> add((n/d)^4, d = numtheory:-divisors(n/2^padic:-ordp(n,2))); # Robert Israel, Apr 30 2017
-
Mathematica
{0}~Join~Table[DivisorSum[n, Mod[#, 2] (n/#)^4 &], {n, 36}] (* Michael De Vlieger, Aug 05 2018 *)
-
PARI
a(n)={sumdiv(n, d, (d%2)*(n/d)^4)} \\ Andrew Howroyd, Aug 05 2018
Formula
From Amiram Eldar, Nov 01 2022: (Start)
Multiplicative with a(2^e) = 2^(4*e) and a(p^e) = (p^(4*e+4)-1)/(p^4-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^5, where c = 31*zeta(5)/160 = 0.200904... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-4)*(1-1/2^s). - Amiram Eldar, Jan 08 2023
Comments