A286016 Signed continued fraction expansion with all signs negative of tanh(1).
1, 5, 2, 2, 2, 2, 9, 2, 2, 2, 2, 2, 2, 2, 2, 13, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 17, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 21, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 25, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1
Examples
a(2) = 5, a(3) = a(4) = a(5) = a(6) = 2, a(7) = 9, etc. These numbers are obtained from the partial quotients xj as follows: x2 = (1 + e^2)/( 2 + 0e^2) ~4.17 so that a(2)=ceiling(x2)=5; x3 = (2 + 0e^2)/( 9 - e^2) ~1.21 so that a(3)=ceiling(x3)=2; x4 = (9 - e^2)/(16 - 2e^2) ~1.31 so that a(4)=ceiling(x4)=2; x5 = (16 - 2e^2)/(23 - 3e^2) ~1.46 so that a(5)=ceiling(x5)=2; x6 = (23 - 3e^2)/(30 - 4e^2) ~1.87 so that a(6)=ceiling(x6)=2; x7 = (30 - 4e^2)/(37 - 5e^2) ~8.11 so that a(7)=ceiling(x7)=9. The pairs of integers appearing in the xj's are obtained as the principal or as every other of the non-principal approximating fractions of e^2 in the sense of the A. Hurwitz reference.
Links
- Adolf Hurwitz, Über die Kettenbrüche, deren Teilnenner arithmetische Reihen bilden, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, Jahrg. 41 (1896), Jubelband 2, 34-64. Reprinted in Hurwitz's Mathematische Werke.
- Oskar Perron, Die Lehre von den Kettenbrüchen, Teubner, Leipzig, 1930.
Programs
-
Maple
x:=(exp(1)-exp(-1))/(exp(1)+exp(-1)):b:=ceil(x): x1:=1/(b-x):L:=[b]: for k from 0 to 40 do: b1:=ceil(x1): x1:=1/(b1-x1): L:=[op(L),b1]: od: print(L);
Formula
Using an obvious condensed notation we get for the sequence 1, 5, 2^(4), 9, 2^(8), 13, 2^(12), 17, 2^(16), 21, 2^(20), ... where 2^(m) means m copies of 2.
Extensions
More terms from Jinyuan Wang, Jul 02 2022
Comments