A286218 Number of partitions of n into parts with an odd number of prime divisors (counted with multiplicity).
1, 0, 1, 1, 1, 2, 2, 3, 4, 4, 6, 7, 9, 11, 13, 16, 19, 23, 28, 33, 40, 46, 55, 65, 76, 89, 104, 121, 141, 163, 190, 219, 253, 290, 334, 383, 439, 502, 573, 653, 744, 845, 961, 1089, 1234, 1395, 1576, 1780, 2007, 2259, 2544, 2856, 3209, 3598, 4033, 4516, 5051, 5644, 6304, 7033, 7843
Offset: 0
Keywords
Examples
a(8) = 4 because we have [8], [5, 3], [3, 3, 2] and [2, 2, 2, 2].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Prime Factor
- Index entries for related partition-counting sequences
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add( `if`(bigomega(d)::odd, d, 0), d=divisors(j)), j=1..n)/n) end: seq(a(n), n=0..80); # Alois P. Heinz, May 04 2017
-
Mathematica
nmax = 60; CoefficientList[Series[Product[1/(1 - Boole[OddQ[PrimeOmega[k]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Product_{k>=1} 1/(1 - x^A026424(k)).