A286219 Number of partitions of n into parts with an even number of prime divisors (counted with multiplicity).
1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 7, 7, 9, 10, 13, 15, 19, 20, 25, 28, 34, 38, 46, 50, 61, 69, 81, 89, 105, 116, 137, 152, 175, 194, 226, 250, 288, 318, 363, 403, 462, 508, 577, 637, 721, 796, 900, 988, 1113, 1228, 1378, 1515, 1696, 1860, 2080, 2287, 2546, 2791, 3106, 3402, 3779
Offset: 0
Keywords
Examples
a(8) = 4 because we have [6, 1, 1], [4, 4], [4, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Prime Factor
- Index entries for related partition-counting sequences
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add( `if`(bigomega(d)::odd, 0, d), d=divisors(j)), j=1..n)/n) end: seq(a(n), n=0..80); # Alois P. Heinz, May 04 2017
-
Mathematica
nmax = 60; CoefficientList[Series[Product[1/(1 - Boole[EvenQ[PrimeOmega[k]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Product_{k>=1} 1/(1 - x^A028260(k)).