A286247 Triangular table: T(n,k) = 0 if k does not divide n, otherwise T(n,k) = P(A046523(k), n/k), where P is sequence A000027 used as a pairing function N x N -> N. Table is read by rows as T(1,1), T(2,1), T(2,2), etc.
1, 2, 3, 4, 0, 3, 7, 5, 0, 10, 11, 0, 0, 0, 3, 16, 8, 5, 0, 0, 21, 22, 0, 0, 0, 0, 0, 3, 29, 12, 0, 14, 0, 0, 0, 36, 37, 0, 8, 0, 0, 0, 0, 0, 10, 46, 17, 0, 0, 5, 0, 0, 0, 0, 21, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 67, 23, 12, 19, 0, 27, 0, 0, 0, 0, 0, 78, 79, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 92, 30, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 21, 106, 0, 17, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21
Offset: 1
Examples
The first fifteen rows of triangle: 1, 2, 3, 4, 0, 3, 7, 5, 0, 10, 11, 0, 0, 0, 3, 16, 8, 5, 0, 0, 21, 22, 0, 0, 0, 0, 0, 3, 29, 12, 0, 14, 0, 0, 0, 36, 37, 0, 8, 0, 0, 0, 0, 0, 10, 46, 17, 0, 0, 5, 0, 0, 0, 0, 21, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 67, 23, 12, 19, 0, 27, 0, 0, 0, 0, 0, 78, 79, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 92, 30, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 21, 106, 0, 17, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21 (Note how triangle A286249 contains on each row the same numbers in the same "divisibility-allotted" positions, but in reverse order). --------------------------------------------------------------- In the following examples: a = this sequence interpreted as a one-dimensional sequence, T = interpreted as a triangular table, A = interpreted as a square array, P = A000027 interpreted as a two-argument pairing function N x N -> N. --- a(7) = T(4,1) = A(1,4) = P(A046523(1),4/1) = P(1,4) = 1+(((1+4)^2 - 1 - (3*4))/2) = 7. a(30) = T(8,2) = A(2,7) = P(A046523(2),8/2) = P(2,4) = (1/2)*(2 + ((2+4)^2) - 2 - 3*4) = 12.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10585; the first 145 rows of triangle/antidiagonals of array
- Eric Weisstein's World of Mathematics, Pairing Function
Crossrefs
Programs
-
Python
from sympy import factorint def T(n, m): return ((n + m)**2 - n - 3*m + 2)//2 def P(n): f = factorint(n) return sorted([f[i] for i in f]) def a046523(n): x=1 while True: if P(n) == P(x): return x else: x+=1 def t(n, k): return 0 if n%k!=0 else T(a046523(k), n//k) for n in range(1, 21): print([t(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, May 08 2017
-
Scheme
(define (A286247 n) (A286247bi (A002260 n) (A004736 n))) (define (A286247bi row col) (if (not (zero? (modulo (+ row col -1) row))) 0 (let ((a (A046523 row)) (b (quotient (+ row col -1) row))) (* (/ 1 2) (+ (expt (+ a b) 2) (- a) (- (* 3 b)) 2))))) ;; Alternatively, with triangular indexing: (define (A286247 n) (A286247tr (A002024 n) (A002260 n))) (define (A286247tr n k) (if (not (zero? (modulo n k))) 0 (let ((a (A046523 k)) (b (/ n k))) (* (/ 1 2) (+ (expt (+ a b) 2) (- a) (- (* 3 b)) 2)))))
Comments