A286237 Triangular table: T(n,k) = 0 if k does not divide n, otherwise T(n,k) = P(phi(k), n/k), where P is sequence A000027 used as a pairing function N x N -> N, and phi is Euler totient function, A000010. Table is read by rows as T(1,1), T(2,1), T(2,2), etc.
1, 2, 1, 4, 0, 3, 7, 2, 0, 3, 11, 0, 0, 0, 10, 16, 4, 5, 0, 0, 3, 22, 0, 0, 0, 0, 0, 21, 29, 7, 0, 5, 0, 0, 0, 10, 37, 0, 8, 0, 0, 0, 0, 0, 21, 46, 11, 0, 0, 14, 0, 0, 0, 0, 10, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 67, 16, 12, 8, 0, 5, 0, 0, 0, 0, 0, 10, 79, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 78, 92, 22, 0, 0, 0, 0, 27, 0, 0, 0, 0, 0, 0, 21, 106, 0, 17, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36
Offset: 1
Examples
The first fifteen rows of the triangle: 1, 2, 1, 4, 0, 3, 7, 2, 0, 3, 11, 0, 0, 0, 10, 16, 4, 5, 0, 0, 3, 22, 0, 0, 0, 0, 0, 21, 29, 7, 0, 5, 0, 0, 0, 10, 37, 0, 8, 0, 0, 0, 0, 0, 21, 46, 11, 0, 0, 14, 0, 0, 0, 0, 10, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 67, 16, 12, 8, 0, 5, 0, 0, 0, 0, 0, 10, 79, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 78, 92, 22, 0, 0, 0, 0, 27, 0, 0, 0, 0, 0, 0, 21, 106, 0, 17, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36 --------------------------------------------------------------- Note how triangle A286239 contains on each row the same numbers in the same "divisibility-allotted" positions, but in reverse order. In the following examples: a = this sequence interpreted as a one-dimensional sequence, A = interpreted as a square array, T = interpreted as a triangular table, P = A000027 interpreted as a pairing function N x N -> N, phi = Euler totient function, A000010. --- a(7) = A(1,4) = T(4,1) = P(phi(1),4/1) = P(1,4) = 1+(((1+4)^2 - 1 - (3*4))/2) = 7. a(30) = A(2,7) = T(8,2) = P(phi(2),8/2) = P(1,4) (i.e., same as above) = 7. a(10) = A(5,1) = T(5,5) = P(phi(5),5/5) = P(4,1) = 1+(((4+1)^2 - 4 - (3*1))/2) = 10. a(110) = A(5,11) = T(15,5) = P(phi(5),15/5) = P(4,3) = 1+((4+3)^2 - 4 - (3*3))/2 = 19.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10585; the first 145 rows of triangle/antidiagonals of array
- Eric Weisstein's World of Mathematics, Pairing Function
Crossrefs
Programs
-
Mathematica
(* Based on Python script by Indranil Ghosh *) T[n_, m_] := ((n + m)^2 - n - 3*m + 2)/2 t[n_, k_] := If[Mod[n, k] != 0, 0, T[EulerPhi[k], n/k]] Table[t[n, k], {n, 1, 20}, {k, 1, n}] (* David Radcliffe, Jun 12 2025 *)
-
Python
from sympy import totient def T(n, m): return ((n + m)**2 - n - 3*m + 2)//2 def t(n, k): return 0 if n%k!=0 else T(totient(k), n//k) for n in range(1, 21): print([t(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, May 10 2017
-
Scheme
(define (A286237 n) (A286237bi (A002260 n) (A004736 n))) (define (A286237bi row col) (if (not (zero? (modulo (+ row col -1) row))) 0 (let ((a (A000010 row)) (b (quotient (+ row col -1) row))) (* (/ 1 2) (+ (expt (+ a b) 2) (- a) (- (* 3 b)) 2))))) ;; Alternatively, with triangular indexing: (define (A286237 n) (A286237tr (A002024 n) (A002260 n))) (define (A286237tr n k) (if (not (zero? (modulo n k))) 0 (let ((a (A000010 k)) (b (/ n k))) (* (/ 1 2) (+ (expt (+ a b) 2) (- a) (- (* 3 b)) 2))))) ;; Note that: (A286237tr n k) is equal to (A286237bi k (+ 1 (- n k))).
Comments