cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A013973 Expansion of Eisenstein series E_6(q) (alternate convention E_3(q)).

Original entry on oeis.org

1, -504, -16632, -122976, -532728, -1575504, -4058208, -8471232, -17047800, -29883672, -51991632, -81170208, -129985632, -187132176, -279550656, -384422976, -545530104, -715608432, -986161176, -1247954400, -1665307728, -2066980608, -2678616864, -3243917376, -4159663200
Offset: 0

Views

Author

Keywords

Comments

Ramanujan Lambert series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).

Examples

			G.f. = 1 - 504*q - 16632*q^2 - 122976*q^3 - 532728*q^4 - 1575504*q^5 + ...
		

References

  • W. Ebeling, Lattices and Codes, Vieweg; 2nd ed., 2002, see p. 53.
  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
  • M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998.
  • N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 111.
  • Jean-Pierre Serre, "A Course in Arithmetic", Springer, 1978
  • Joseph H. Silverman, "Advanced Topics in the Arithmetic of Elliptic Curves", Springer, 1994

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).
Cf. A001160, A286346 (eta(q)^24 / eta(q^2)^12), A286399 (eta(q^2)^12 * eta(q^4)^8 / eta(q)^8).

Programs

  • Magma
    Basis( ModularForms( Gamma1(1), 6), 25); /* Michael Somos, Apr 01 2015 */
  • Maple
    E := proc(k) local n,t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n,n=1..60); series(t1,q,60); end; E(6);
    # alternative
    A013973 := proc(n)
        if n = 0 then
            1;
        else
            -504*numtheory[sigma][5](n) ;
        end if;
    end proc:
    seq(A013973(n),n=0..10) ; # R. J. Mathar, Feb 22 2021
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], -504 DivisorSigma[ 5, n]]; (* Michael Somos, Apr 21 2013 *)
    a[ n_] := SeriesCoefficient[ With[ {t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, t2^3 - 33 (t2 + t3) t2 t3 + t3^3], {q, 0, n}]; (* Michael Somos, Apr 21 2013 *)
    a[ n_] := SeriesCoefficient[ With[ {t3 = EllipticTheta[ 3, 0, q]^4, t4 = EllipticTheta[ 4, 0, q]^4}, (t3^3 - 3 (t3 - t4)^2 (t3 + t4) + t4^3) / 2], {q, 0, 2 n}]; (* Michael Somos, Jun 04 2014 *)
    a[ n_] := SeriesCoefficient[ With[ {e1 = QPochhammer[ q]^8, e4 = 32 q QPochhammer[ q^4]^8}, (e1 + e4) (e1^2 - 16 e1 e4 - 8 e4^2) / QPochhammer[ q^2]^12], {q, 0, n}]; (* Michael Somos, Apr 01 2015 *)
    a[ n_] := SeriesCoefficient[ With[ {t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, t2^3 - 3/2 (t2 + t3) t2 t3 + t3^3], {q, 0, 2 n}]; (* Michael Somos, Jul 31 2016 *)
    terms = 25; E6[x_] = 1-(12/BernoulliB[6])*Sum[k^5*x^k/(1-x^k), {k, terms}]; CoefficientList[E6[x] + O[x]^terms, x] (* Jean-François Alcover, Feb 28 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, -504 * sigma( n, 5))};
    
  • PARI
    {a(n) = my(A, A1, A4); if( n<0, 0, A = x * O(x^n); A1 = eta(x + A)^8; A4 = 32 * x * eta(x^4 + A)^8; polcoeff( (A1 + A4) * (A1^2 - 16 * A1 * A4 - 8 * A4^2) / eta(x^2 + A)^12, n))}; /* Michael Somos, Dec 30 2008 */
    
  • Sage
    ModularForms( Gamma1(1), 6, prec=25).0; # Michael Somos, Jun 04 2013
    

Formula

E6(q) = 1 - 504*Sum_{i>=1} sigma_5(i)q^i where sigma_5(n) is A001160, the sum of fifth powers of the divisors of n. It can also be expressed as E6(q) = 1 - 504*Sum_{i>=1} i^5*q^i/(1-q^i). - Gene Ward Smith, Aug 22 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2*v - 8*u^2*w - 66*u*v^2 + 592*u*v*w - 512*u*w^2 + 121*v^3 - 4224*v^2*w + 4096*v*w^2. - Michael Somos, Apr 10 2005
Expansion of Ramanujan's function R(q) = 216*g3 (Weierstrass invariant).
Expansion of (eta(q)^8 + 32 * eta(q^4)^8) * (eta(q)^16 - 512 * eta(q)^8 * eta(q^4)^8 - 8192 * eta(q^4)^16) / eta(q^2)^12 in powers of q. - Michael Somos, Dec 30 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / t) = - (t/i)^6 * f(t) where q = exp(2 Pi i t). - Michael Somos, Dec 30 2008
E6(q) = eta(q)^24 / eta(q^2)^12 - 480 * eta(q^2)^12 - 16896 * eta(q^2)^12 * eta(q^4)^8 / eta(q)^8 + 8192 * eta(q^4)^24 / eta(q^2)^12. - Seiichi Manyama, May 08 2017

A319307 Expansion of theta_4(q)^16 in powers of q = exp(Pi i t).

Original entry on oeis.org

1, -32, 480, -4480, 29152, -140736, 525952, -1580800, 3994080, -8945824, 18626112, -36714624, 67978880, -118156480, 197120256, -321692928, 509145568, -772845120, 1143441760, -1681379200, 2428524096, -3392205824, 4658843520, -6411152640, 8705492608, -11488092896
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2018

Keywords

Crossrefs

theta_4(q)^b: A002448 (b=1), A104794 (b=2), A213384 (b=3), A096727 (b=4), A035016 (b=8), A286346 (b=12), this sequence (b=16), A319308 (b=20), A319309 (b=24), A319310 (b=28).
Cf. A000152.

Formula

Expansion of eta(q)^32 / eta(q^2)^16 in powers of q.

A319308 Expansion of theta_4(q)^20 in powers of q = exp(Pi i t).

Original entry on oeis.org

1, -40, 760, -9120, 77560, -497648, 2508000, -10232640, 34729720, -100906760, 259114704, -606957280, 1327461600, -2738111280, 5341699520, -9915552192, 17701924600, -30615844560, 51294999960, -83279292960, 131880275664, -204949382400, 312126610080, -464844224960, 680432137440
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2018

Keywords

Crossrefs

theta_4(q)^b: A002448 (b=1), A104794 (b=2), A213384 (b=3), A096727 (b=4), A035016 (b=8), A286346 (b=12), A319307 (b=16), this sequence (b=20), A319309 (b=24), A319310 (b=28).

Formula

Expansion of eta(q)^40 / eta(q^2)^20 in powers of q.

A319309 Expansion of theta_4(q)^24 in powers of q = exp(Pi i t).

Original entry on oeis.org

1, -48, 1104, -16192, 170064, -1362336, 8662720, -44981376, 195082320, -721175536, 2319457632, -6631997376, 17231109824, -41469483552, 93703589760, -200343312768, 407488018512, -793229226336, 1487286966928, -2697825744960, 4744779429216, -8110465650176
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2018

Keywords

Crossrefs

theta_4(q)^b: A002448 (b=1), A104794 (b=2), A213384 (b=3), A096727 (b=4), A035016 (b=8), A286346 (b=12), A319307 (b=16), A319308 (b=20), this sequence (b=24), A319310 (b=28).
Cf. A000156.

Formula

Expansion of eta(q)^48 / eta(q^2)^24 in powers of q.

A319310 Expansion of theta_4(q)^28 in powers of q = exp(Pi i t).

Original entry on oeis.org

1, -56, 1512, -26208, 327656, -3147984, 24189984, -152867520, 811401192, -3681079640, 14500933104, -50376047904, 156797510688, -444306558864, 1163495873088, -2851049839680, 6597606440936, -14512424533488, 30505974273096, -61591664700384, 119983597365744, -226303038736128
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2018

Keywords

Crossrefs

theta_4(q)^b: A002448 (b=1), A104794 (b=2), A213384 (b=3), A096727 (b=4), A035016 (b=8), A286346 (b=12), A319307 (b=16), A319308 (b=20), A319309 (b=24), this sequence (b=28).

Formula

Expansion of eta(q)^56 / eta(q^2)^28 in powers of q.

A319554 Expansion of 1/theta_4(q)^12 in powers of q = exp(Pi i t).

Original entry on oeis.org

1, 24, 312, 2912, 21816, 139152, 783328, 3986112, 18650424, 81251896, 332798544, 1291339296, 4776117216, 16922753616, 57683178432, 189821722688, 604884735288, 1871370360240, 5633654421720, 16535803556064, 47405095227984, 132942579098368, 365211946954656
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2018

Keywords

Crossrefs

1/theta_4(q)^b: A015128 (b=1), A001934 (b=2), A319552 (b=3), A284286 (b=4), A319553 (b=8), this sequence (b=12).
Cf. A002131, A002448 (theta_4(q)), A004413, A286346.

Programs

  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, N, ((1-x^(2*k))/(1-x^k)^2)^12))

Formula

Convolution inverse of A286346.
a(n) = (-1)^n * A004413(n).
a(0) = 1, a(n) = (24/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0.
G.f.: Product_{k>=1} ((1 - x^(2k))/(1 - x^k)^2)^12.
Showing 1-6 of 6 results.