cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A360398 a(n) = A026430(1 + A360392(n)).

Original entry on oeis.org

5, 8, 10, 12, 15, 16, 18, 21, 24, 26, 27, 30, 31, 35, 37, 39, 42, 44, 45, 48, 50, 52, 55, 57, 59, 61, 65, 66, 69, 70, 72, 75, 78, 80, 81, 84, 86, 88, 91, 93, 95, 98, 100, 102, 105, 107, 108, 111, 113, 116, 118, 120, 123, 125, 126, 129, 132, 134, 135, 138
Offset: 1

Views

Author

Clark Kimberling, Feb 10 2023

Keywords

Comments

This is the first of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) u o v, defined by (u o v)(n) = u(v(n));
(2) u o v';
(3) u' o v;
(4) v' o u'.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9 (and likewise for A360394-A360397 and A360402-A360405).

Examples

			(1)  u o v = (5, 8, 10, 12, 15, 16, 18, 21, 24, 26, 27, 30, 31, 35, 37, 39, ...) = A360398
(2)  u o v' = (1, 3, 6, 9, 14, 19, 23, 28, 33, 36, 41, 46, 51, 54, 60, 63, 68, ...) = A360399
(3)  u' o v = (7, 13, 20, 22, 29, 32, 34, 40, 47, 49, 53, 58, 62, 67, 74, 76, ...) = A360400
(4)  u' o v' = (2, 4, 11, 17, 25, 38, 43, 56, 64, 71, 79, 92, 101, 106, 119, ...) = A360401
		

Crossrefs

Cf. A026530, A356133, A360392, A360393, A360399, A286355, A286356, A360394 (intersections instead of results of composition), A360402-A360405.

Programs

  • Mathematica
    z = 2000;
    u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 2;  (* A360392 *)
    v1 = Complement[Range[Max[v]], v];    (* A360393 *)
    zz = 100;
    Table[u[[v[[n]]]], {n, 1, zz}]    (* A360398 *)
    Table[u[[v1[[n]]]], {n, 1, zz}]   (* A360399 *)
    Table[u1[[v[[n]]]], {n, 1, zz}]   (* A360400 *)
    Table[u1[[v1[[n]]]], {n, 1, zz}]  (* A360401 *)

A286454 Compound filter (prime signature & prime signature of conjugated prime factorization): a(n) = P(A101296(n), A286621(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 5, 8, 9, 12, 32, 23, 20, 13, 49, 38, 51, 47, 82, 49, 35, 68, 51, 80, 72, 124, 140, 122, 74, 18, 175, 26, 111, 155, 334, 192, 65, 257, 280, 82, 116, 255, 329, 355, 99, 327, 570, 380, 177, 72, 469, 437, 132, 31, 72, 532, 216, 498, 74, 257, 144, 599, 634, 597, 448, 632, 745, 159, 119, 784, 1044, 782, 331, 907, 570, 863, 186, 905, 1039, 72, 384, 140, 1335, 1037
Offset: 1

Views

Author

Antti Karttunen, May 14 2017

Keywords

Comments

Here, instead of A046523 and A278221 we use as the components of a(n) their rgs-versions A101296 and A286621 because of the latter sequence's moderate growth rates.
For all i, j: a(i) = a(j) => A286356(i) = A286356(j).

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A101296(n)+A286621(n))^2) - A101296(n) - 3*A286621(n)).

A318891 Filter sequence combining the prime signature of n (A046523) with the largest prime factor of n (A006530).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 10, 15, 16, 12, 17, 18, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 19, 30, 14, 31, 32, 33, 23, 34, 35, 36, 37, 38, 18, 39, 40, 41, 42, 18, 30, 43, 44, 21, 19, 45, 33, 46, 47, 48, 49, 50, 25, 51, 23, 52, 53, 54, 39, 36, 55, 56, 57, 58, 18, 59, 19, 60, 61, 62, 63, 64, 65, 66, 30, 67, 46, 68, 69, 48, 23, 70, 50
Offset: 1

Views

Author

Antti Karttunen, Sep 16 2018

Keywords

Comments

Restricted growth sequence transform of A286356.
For all i, j: a(i) = a(j) => A297112(i) = A297112(j). (Also, equivalently, A297113 or A297167 in place of A297112.)

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
    A318891aux(n) = [A046523(n), A061395(n)];
    v318891 = rgs_transform(vector(up_to,n,A318891aux(n)));
    A318891(n) = v318891[n];

A360399 a(n) = A026430(1 + A360393(n)).

Original entry on oeis.org

1, 3, 6, 9, 14, 19, 23, 28, 33, 36, 41, 46, 51, 54, 60, 63, 68, 73, 77, 82, 87, 90, 96, 99, 103, 109, 114, 117, 121, 128, 130, 136, 141, 144, 149, 154, 159, 162, 168, 171, 175, 181, 186, 189, 194, 199, 203, 209, 213, 216, 222, 225, 230, 235, 239, 245, 249
Offset: 1

Views

Author

Clark Kimberling, Feb 10 2023

Keywords

Comments

This is the second of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) u o v, defined by (u o v)(n) = u(v(n));
(2) u o v';
(3) u' o v;
(4) v' o u'.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9 (and likewise for A360394-A360397 and A360402-A360405).

Examples

			(1)  u o v = (5, 8, 10, 12, 15, 16, 18, 21, 24, 26, 27, 30, 31, 35, 37, 39, ...) = A360398
(2)  u o v' = (1, 3, 6, 9, 14, 19, 23, 28, 33, 36, 41, 46, 51, 54, 60, 63, 68, ...) = A360399
(3)  u' o v = (7, 13, 20, 22, 29, 32, 34, 40, 47, 49, 53, 58, 62, 67, 74, 76, ...) = A360400
(4)  u' o v' = (2, 4, 11, 17, 25, 38, 43, 56, 64, 71, 79, 92, 101, 106, 119, ...) = A360401
		

Crossrefs

Cf. A026530, A356133, A360392, A360393, A360398, A286355, A286356, A360394 (intersections instead of results of composition), A360402-A360405.

Programs

  • Mathematica
    z = 2000;
    u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 2;  (* A360392 *)
    v1 = Complement[Range[Max[v]], v];    (* A360393 *)
    zz = 100;
    Table[u[[v[[n]]]], {n, 1, zz}]    (* A360398 *)
    Table[u[[v1[[n]]]], {n, 1, zz}]   (* A360399 *)
    Table[u1[[v[[n]]]], {n, 1, zz}]   (* A360400 *)
    Table[u1[[v1[[n]]]], {n, 1, zz}]  (* A360401 *)

A360400 a(n) = A356133(A360392(n)).

Original entry on oeis.org

7, 13, 20, 22, 29, 32, 34, 40, 47, 49, 53, 58, 62, 67, 74, 76, 83, 85, 89, 94, 97, 104, 110, 112, 115, 122, 127, 131, 137, 140, 142, 148, 155, 157, 161, 166, 169, 176, 182, 184, 187, 193, 200, 202, 208, 211, 215, 220, 223, 229, 236, 238, 244, 247, 251, 257
Offset: 1

Views

Author

Clark Kimberling, Mar 11 2023

Keywords

Comments

This is the third of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) u o v, defined by (u o v)(n) = u(v(n));
(2) u o v';
(3) u' o v;
(4) v' o u'.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9 (and likewise for A360394-A360397 and A360402-A360405).

Examples

			(1)  u o v = (5, 8, 10, 12, 15, 16, 18, 21, 24, 26, 27, 30, 31, 35, 37, 39, ...) = A360398
(2)  u o v' = (1, 3, 6, 9, 14, 19, 23, 28, 33, 36, 41, 46, 51, 54, 60, 63, 68, ...) = A360399
(3)  u' o v = (7, 13, 20, 22, 29, 32, 34, 40, 47, 49, 53, 58, 62, 67, 74, 76, ...) = A360400
(4)  u' o v' = (2, 4, 11, 17, 25, 38, 43, 56, 64, 71, 79, 92, 101, 106, 119, ...) = A360401
		

Crossrefs

Cf. A026530, A356133, A360392, A360393, A360398, A286354, A286356, A360394 (intersections instead of results of composition), A360402-A360405.

Programs

  • Mathematica
    z = 2000;
    u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 2;  (* A360392 *)
    v1 = Complement[Range[Max[v]], v];  (* A360393 *)
    zz = 100;
    Table[u[[v[[n]]]], {n, 1, zz}]    (* A360398 *)
    Table[u[[v1[[n]]]], {n, 1, zz}]   (* A360399 *)
    Table[u1[[v[[n]]]], {n, 1, zz}]   (* A360400 *)
    Table[u1[[v1[[n]]]], {n, 1, zz}]  (* A360401 *)

A286452 Compound filter (largest prime factor of n & prime signature of 2n-1): a(n) = P(A061395(n), A046523(2n-1)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

0, 2, 5, 2, 18, 5, 14, 16, 5, 9, 50, 5, 42, 59, 9, 2, 73, 23, 44, 31, 14, 20, 199, 5, 18, 61, 5, 40, 115, 9, 77, 67, 50, 35, 40, 5, 90, 179, 61, 9, 391, 14, 185, 50, 9, 100, 205, 23, 14, 94, 35, 27, 1006, 5, 20, 40, 44, 115, 395, 31, 228, 131, 59, 2, 61, 20, 295, 442, 54, 14, 320, 23, 346, 265, 9, 44, 125, 61, 275, 31, 23, 104, 1349, 14, 52, 314, 65, 125, 430
Offset: 1

Views

Author

Antti Karttunen, May 14 2017

Keywords

Crossrefs

Programs

  • Python
    from sympy import primepi, primefactors, factorint
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a061395(n): return 0 if n==1 else primepi(primefactors(n)[-1])
    def a(n): return T(a061395(n), a046523(2*n - 1)) # Indranil Ghosh, May 14 2017
  • Scheme
    (define (A286452 n) (* (/ 1 2) (+ (expt (+ (A061395 n) (A046523 (+ n n -1))) 2) (- (A061395 n)) (- (* 3 (A046523 (+ n n -1)))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A061395(n)+A046523(2n-1))^2) - A061395(n) - 3*A046523(2n-1)).

A286453 Compound filter: a(n) = P(A061395(n), A286465(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

0, 2, 5, 11, 94, 5, 14, 254, 17, 9, 195, 47, 259, 500, 9, 11, 413, 138, 44, 303, 32, 20, 2784, 47, 354, 216, 5, 329, 506, 9, 77, 3161, 356, 35, 175, 107, 202, 2709, 216, 24, 11188, 14, 420, 356, 24, 285, 450, 498, 70, 2349, 35, 51, 115937, 5, 20, 329, 74, 310, 3420, 864, 1243, 336, 500, 11, 384, 20, 580, 47285, 87, 14, 615, 498, 1296, 3015, 9, 74, 3491, 216
Offset: 1

Views

Author

Antti Karttunen, May 14 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A061395(n)+A286465(n))^2) - A061395(n) - 3*A286465(n)).
Showing 1-7 of 7 results.