cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A286585 a(n) = A053735(A048673(n)).

Original entry on oeis.org

1, 2, 1, 3, 2, 4, 2, 4, 3, 3, 3, 5, 1, 5, 2, 5, 2, 4, 2, 4, 2, 4, 3, 6, 5, 6, 3, 6, 4, 7, 3, 6, 3, 3, 3, 5, 3, 5, 5, 5, 4, 3, 4, 5, 4, 6, 1, 7, 5, 6, 4, 7, 2, 8, 4, 7, 4, 5, 3, 8, 4, 4, 4, 7, 4, 6, 2, 4, 5, 6, 3, 6, 4, 6, 5, 6, 4, 6, 4, 6, 7, 5, 3, 4, 5, 7, 6, 6, 5, 5, 4, 7, 3, 8, 1, 8, 5, 6, 3, 7, 6, 7, 2, 8
Offset: 1

Views

Author

Antti Karttunen, May 31 2017

Keywords

Crossrefs

Programs

  • Python
    from sympy.ntheory.factor_ import digits
    from sympy import factorint, nextprime
    from operator import mul
    def a053735(n): return sum(digits(n, 3)[1:])
    def a048673(n):
        f = factorint(n)
        return 1 if n==1 else (1 + reduce(mul, [nextprime(i)**f[i] for i in f]))//2
    def a(n): return a053735(a048673(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 12 2017
  • Scheme
    (define (A286585 n) (A053735 (A048673 n)))
    

Formula

a(n) = A053735(A048673(n)).
For all n >= 0, a(A000079(n)) = n+1.

A091304 a(n) = Omega(2n-1) (number of prime factors of the n-th odd number, counted with multiplicity).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 2, 1, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 4, 1, 2, 2, 1, 2, 2, 2, 1, 3, 1, 1, 3, 1, 1, 2, 1, 2, 3, 2, 2, 2, 3, 1, 2, 1, 2, 4, 1, 1, 2, 2, 2, 3, 1, 1, 3, 2, 1, 2, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 1, 2, 2, 2, 4, 1, 1, 3, 1, 1, 2, 2, 2, 3, 2
Offset: 1

Views

Author

Andrew S. Plewe, Feb 20 2004

Keywords

Comments

Omega(n) of the odd integers follows a pattern similar to A001222, with 4 maxima instead of 2 - i.e. between 2^n and (2^(n+1) - 1) there are two numbers with exactly n factors (2^n and 2^(n-1) * 3) while the odd integers have 4 maxima (3^n, 3^(n-1) * 5, 3^(n-1) * 7, 5^2*3^(n-2)) between 3^n and 3^(n+1) - 1.

Examples

			Omega(1) = 0, Omega(9) = 2 (3 * 3 = 9), Omega (243) = 5 (3 * 3 * 3 * 3 * 3 = 243), Omega(51) = 2 (3 * 17 = 51).
For n = 92, A001222(2*92 - 1) = A001222(183) = 2 as 183 = 3*61, thus a(92) = 2. - _Antti Karttunen_, May 31 2017
		

Crossrefs

One more than A285716 (after the initial term).
Cf. A006254 (positions of ones).

Programs

  • Mathematica
    a[n_] := PrimeOmega[2*n - 1]; Array[a, 100] (* Amiram Eldar, Jul 23 2023 *)
  • PARI
    a(n) = bigomega(2*n-1) \\ Michel Marcus, Jul 26 2013, edited to reflect the changed starting offset by Antti Karttunen, May 31 2017

Formula

a(n) = Omega(2n-1). [Odd bisection of A001222.]
From Antti Karttunen, May 31 2017: (Start)
For n >= 1, a(n) = A000120(A244153(n)).
For n >= 2, a(n) = 1+A285716(n).
(End)

Extensions

Starting offset changed to 1 and the definition modified respectively. Also values of the initial term and of term a(92) (= 2, previously a(91) = 1) corrected by Antti Karttunen, May 31 2017

A286583 a(n) = A007814(A048673(n)).

Original entry on oeis.org

0, 1, 0, 0, 2, 3, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 5, 2, 2, 0, 2, 0, 1, 0, 1, 4, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 3, 2, 0, 0, 0, 1, 4, 0, 1, 2, 1, 0, 1, 0, 0, 1, 1, 3, 1, 0, 2, 1, 2, 1, 0, 2, 0, 1, 3, 1, 0, 3, 3, 7, 1, 2, 0, 0, 0, 3, 0, 0, 1, 4, 0, 0, 1, 0, 0, 4, 0, 5, 0, 1, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 6
Offset: 1

Views

Author

Antti Karttunen, May 31 2017

Keywords

Crossrefs

Cf. A246261 (positions of zeros), A246263 (of nonzeros).

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus
    A048673(n) = (A003961(n)+1)/2;
    A007814(n) = (valuation(n,2));
    A286583(n) = A007814(A048673(n));
    
  • Python
    from sympy import factorint, nextprime, prod
    def a007814(n): return 1 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1")
    def a048673(n):
        f = factorint(n)
        return 1 if n==1 else (1 + prod(nextprime(i)**f[i] for i in f))//2
    def a(n): return a007814(a048673(n)) # Indranil Ghosh, Jun 12 2017
  • Scheme
    (define (A286583 n) (A007814 (A048673 n)))
    

Formula

a(n) = A007814(A048673(n)).

A286584 a(n) = A048673(n) mod 4.

Original entry on oeis.org

1, 2, 3, 1, 0, 0, 2, 2, 1, 3, 3, 3, 1, 1, 2, 1, 2, 2, 0, 0, 0, 0, 3, 0, 1, 2, 3, 2, 0, 1, 3, 2, 1, 1, 3, 1, 1, 3, 3, 3, 2, 3, 0, 3, 0, 0, 3, 3, 1, 2, 0, 1, 2, 0, 2, 1, 2, 3, 3, 2, 2, 0, 2, 1, 0, 2, 0, 2, 1, 0, 1, 2, 0, 2, 3, 0, 0, 0, 2, 0, 1, 1, 1, 0, 3, 3, 2, 0, 1, 3, 2, 3, 1, 0, 1, 0, 3, 2, 3, 1, 0, 3, 2, 2, 1, 1, 3, 3, 1, 1, 3, 2, 0
Offset: 1

Views

Author

Antti Karttunen, May 31 2017

Keywords

Crossrefs

Cf. A246261 (positions of odd terms), A246263 (of even terms).

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus
    A048673(n) = (A003961(n)+1)/2;
    A286584(n) = (A048673(n)%4);
    
  • Python
    from sympy import factorint, nextprime
    from operator import mul
    def a048673(n):
        f = factorint(n)
        return 1 if n==1 else (1 + reduce(mul, [nextprime(i)**f[i] for i in f]))/2
    def a(n): return a048673(n)%4 # Indranil Ghosh, Jun 12 2017
  • Scheme
    (define (A286584 n) (modulo (A048673 n) 4))
    

Formula

a(n) = A010873(A048673(n)) = A048673(n) mod 4.

A289623 a(n) = A055396(A048673(n)).

Original entry on oeis.org

0, 1, 2, 3, 1, 1, 1, 1, 6, 5, 4, 9, 2, 7, 1, 13, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 16, 8, 1, 2, 10, 2, 30, 2, 3, 14, 3, 1, 23, 1, 17, 1, 1, 2, 4, 18, 1, 1, 4, 1, 1, 1, 35, 1, 15, 11, 1, 1, 1, 1, 3, 1, 1, 1, 1, 21, 1, 12, 1, 1, 1, 2, 1, 1, 1, 1, 1, 65, 3, 2, 1, 19, 20, 1, 1, 4, 56, 1, 32, 2, 1, 2, 1, 2, 1, 38, 6
Offset: 1

Views

Author

Antti Karttunen, Jul 16 2017

Keywords

Comments

From the scatter plot it can be seen that the terms are grouped into two distinct populations by their magnitude, with significant gap between them.

Crossrefs

Cf. A048673, A055396, A246263 (the positions of ones).

Programs

Formula

a(n) = A055396(A048673(n)).
Showing 1-5 of 5 results.