A286784 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
1, 1, 1, 2, 4, 1, 5, 15, 9, 1, 14, 56, 56, 16, 1, 42, 210, 300, 150, 25, 1, 132, 792, 1485, 1100, 330, 36, 1, 429, 3003, 7007, 7007, 3185, 637, 49, 1, 1430, 11440, 32032, 40768, 25480, 7840, 1120, 64, 1, 4862, 43758, 143208, 222768, 179928, 77112, 17136, 1836, 81, 1, 16796, 167960, 629850, 1162800, 1162800, 651168, 203490, 34200, 2850, 100, 1
Offset: 0
Examples
A(x;t) = 1 + (1 + t)*x + (2 + 4*t + t^2)*x^2 + (5 + 15*t + 9*t^2 + t^3)*x^3 + ... Triangle starts: n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [0] 1; [1] 1, 1; [2] 2, 4, 1; [3] 5, 15, 9, 1; [4] 14, 56, 56, 16, 1; [5] 42, 210, 300, 150, 25, 1; [6] 132, 792, 1485, 1100, 330, 36, 1; [7] 429, 3003, 7007, 7007, 3185, 637, 49, 1; [8] 1430, 11440, 32032, 40768, 25480, 7840, 1120, 64, 1; [9] 4862, 43758, 143208, 222768, 179928, 77112, 17136, 1836, 81, 1; [10] ...
Links
- Gheorghe Coserea, Rows n=0..122, flattened
- Luca G. Molinari, Hedin's equations and enumeration of Feynman's diagrams, arXiv:cond-mat/0401500 [cond-mat.str-el], 2005.
Programs
-
Magma
/* As triangle */ [[(Binomial(2*n, n+m)*Binomial(n+1, m))/(n+1): m in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 23 2018
-
Mathematica
Flatten@Table[Binomial[2 n, n + m] Binomial[n + 1, m] / (n + 1), {n, 0, 10}, {m, 0, n}] (* Vincenzo Librandi, Sep 23 2018 *)
-
Maxima
T(n,m):=(binomial(2*n,n+m)*binomial(n+1,m))/(n+1); /* Vladimir Kruchinin, Sep 23 2018 */
-
PARI
A286784_ser(N,t='t) = my(x='x+O('x^N)); serreverse(Ser(x*(1-x)^2/(1+(t-1)*x)))/x; concat(apply(p->Vecrev(p), Vec(A286784_ser(12)))) \\ test: y=A286784_ser(50); y*(1-x*y)^2 == 1 + ('t-1)*x*y
Formula
y(x;t) = Sum_{n>=0} P_n(t)*x^n satisfies y*(1-x*y)^2 = 1 + (t-1)*x*y, where P_n(t) = Sum_{k=0..n} T(n,k)*t^k.
A000108(n) = T(n,0), A001791(n) = T(n,1), A002055(n+3) = T(n,2), A000290(n) = T(n,n-1), A006013(n) = P_n(1), A003169(n+1) = P_n(2).
T(n,m) = C(2*n,n+m)*C(n+1,m)/(n+1). - Vladimir Kruchinin, Sep 23 2018
Comments