A286877 One of the two successive approximations up to 17^n for 17-adic integer sqrt(-1). Here the 4 (mod 17) case (except for n=0).
0, 4, 38, 2928, 27493, 1029745, 23747457, 313398285, 3596107669, 94280954402, 450044583893, 28673959190179, 28673959190179, 3524407382568745, 13428985415474682, 13428985415474682, 42949774758062711577, 91610966633729580058, 6709533061724423693474
Offset: 0
Examples
a(1) = ( 4)_17 = 4, a(2) = ( 24)_17 = 38, a(3) = ( A24)_17 = 2928, a(4) = (5A24)_17 = 27493.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..813
- Peter Bala, Using Lucas polynomials to find the p-adic square roots of -1, -2 and -3, Dec 2022.
- Wikipedia, Hensel's Lemma.
Crossrefs
Programs
-
PARI
a(n) = truncate(sqrt(-1+O(17^n))); \\ Michel Marcus, Aug 04 2017
-
Python
def A(k, m, n): ary=[0] a, mod = k, m for i in range(n): b=a%mod ary.append(b) a=b**m mod*=m return ary def a286877(n): return A(4, 17, n) print(a286877(100)) # Indranil Ghosh, Aug 03 2017
-
Ruby
def A(k, m, n) ary = [0] a, mod = k, m n.times{ b = a % mod ary << b a = b ** m mod *= m } ary end def A286877(n) A(4, 17, n) end p A286877(100)
Formula
a(0) = 0 and a(1) = 4, a(n) = a(n-1) + 2 * (a(n-1)^2 + 1) mod 17^n for n > 1.
a(n) == L(17^n,4) (mod 17^n) == (2 + sqrt(5))^(17^n) + (2 - sqrt(5))^(17^n) (mod 17^n), where L(n,x) denotes the n-th Lucas polynomial of A114525. - Peter Bala, Dec 02 2022
Comments