cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286877 One of the two successive approximations up to 17^n for 17-adic integer sqrt(-1). Here the 4 (mod 17) case (except for n=0).

Original entry on oeis.org

0, 4, 38, 2928, 27493, 1029745, 23747457, 313398285, 3596107669, 94280954402, 450044583893, 28673959190179, 28673959190179, 3524407382568745, 13428985415474682, 13428985415474682, 42949774758062711577, 91610966633729580058, 6709533061724423693474
Offset: 0

Views

Author

Seiichi Manyama, Aug 02 2017

Keywords

Comments

x = ...GC5A24,
x^2 = ...GGGGGG = -1.

Examples

			a(1) = (   4)_17 = 4,
a(2) = (  24)_17 = 38,
a(3) = ( A24)_17 = 2928,
a(4) = (5A24)_17 = 27493.
		

Crossrefs

The two successive approximations up to p^n for p-adic integer sqrt(-1): A048898 and A048899 (p=5), A286840 and A286841 (p=13), this sequence and A286878 (p=17).

Programs

  • PARI
    a(n) = truncate(sqrt(-1+O(17^n))); \\ Michel Marcus, Aug 04 2017
  • Python
    def A(k, m, n):
        ary=[0]
        a, mod = k, m
        for i in range(n):
              b=a%mod
              ary.append(b)
              a=b**m
              mod*=m
        return ary
    def a286877(n):
        return A(4, 17, n)
    print(a286877(100)) # Indranil Ghosh, Aug 03 2017
    
  • Ruby
    def A(k, m, n)
      ary = [0]
      a, mod = k, m
      n.times{
        b = a % mod
        ary << b
        a = b ** m
        mod *= m
      }
      ary
    end
    def A286877(n)
      A(4, 17, n)
    end
    p A286877(100)
    

Formula

a(0) = 0 and a(1) = 4, a(n) = a(n-1) + 2 * (a(n-1)^2 + 1) mod 17^n for n > 1.
a(n) == L(17^n,4) (mod 17^n) == (2 + sqrt(5))^(17^n) + (2 - sqrt(5))^(17^n) (mod 17^n), where L(n,x) denotes the n-th Lucas polynomial of A114525. - Peter Bala, Dec 02 2022