A286878 One of the two successive approximations up to 17^n for 17-adic integer sqrt(-1). Here the 13 (mod 17) case (except for n=0).
0, 13, 251, 1985, 56028, 390112, 390112, 96940388, 3379649772, 24306922095, 1565949316556, 5597937117454, 553948278039582, 6380170650337192, 154948841143926247, 2848994066094341111, 5711417117604156904, 735629295252607184119, 7353551390343301297535
Offset: 0
Keywords
Examples
a(1) = ( D)_17 = 13, a(2) = ( ED)_17 = 251, a(3) = ( 6ED)_17 = 1985, a(4) = (B6ED)_17 = 56028.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..812
- Wikipedia, Hensel's Lemma.
Crossrefs
Programs
-
PARI
a(n) = if (n, 17^n-truncate(sqrt(-1+O(17^n))), 0); \\ Michel Marcus, Aug 04 2017
-
Python
def A(k, m, n): ary=[0] a, mod = k, m for i in range(n): b=a%mod ary.append(b) a=b**m mod*=m return ary def a286878(n): return A(13, 17, n) print(a286878(100)) # Indranil Ghosh, Aug 03 2017, after Ruby
-
Ruby
def A(k, m, n) ary = [0] a, mod = k, m n.times{ b = a % mod ary << b a = b ** m mod *= m } ary end def A286878(n) A(13, 17, n) end p A286878(100)
Formula
If n > 0, a(n) = 17^n - A286877(n).
a(0) = 0 and a(1) = 13, a(n) = a(n-1) + 15 * (a(n-1)^2 + 1) mod 17^n for n > 1.
Comments