cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286878 One of the two successive approximations up to 17^n for 17-adic integer sqrt(-1). Here the 13 (mod 17) case (except for n=0).

Original entry on oeis.org

0, 13, 251, 1985, 56028, 390112, 390112, 96940388, 3379649772, 24306922095, 1565949316556, 5597937117454, 553948278039582, 6380170650337192, 154948841143926247, 2848994066094341111, 5711417117604156904, 735629295252607184119, 7353551390343301297535
Offset: 0

Views

Author

Seiichi Manyama, Aug 02 2017

Keywords

Comments

x = ...04B6ED,
x^2 = ...GGGGGG = -1.

Examples

			a(1) = (   D)_17 = 13,
a(2) = (  ED)_17 = 251,
a(3) = ( 6ED)_17 = 1985,
a(4) = (B6ED)_17 = 56028.
		

Crossrefs

The two successive approximations up to p^n for p-adic integer sqrt(-1): A048898 and A048899 (p=5), A286840 and A286841 (p=13), A286877 and this sequence (p=17).

Programs

  • PARI
    a(n) = if (n, 17^n-truncate(sqrt(-1+O(17^n))), 0); \\ Michel Marcus, Aug 04 2017
  • Python
    def A(k, m, n):
          ary=[0]
          a, mod = k, m
          for i in range(n):
              b=a%mod
              ary.append(b)
              a=b**m
              mod*=m
          return ary
    def a286878(n): return A(13, 17, n)
    print(a286878(100)) # Indranil Ghosh, Aug 03 2017, after Ruby
    
  • Ruby
    def A(k, m, n)
      ary = [0]
      a, mod = k, m
      n.times{
        b = a % mod
        ary << b
        a = b ** m
        mod *= m
      }
      ary
    end
    def A286878(n)
      A(13, 17, n)
    end
    p A286878(100)
    

Formula

If n > 0, a(n) = 17^n - A286877(n).
a(0) = 0 and a(1) = 13, a(n) = a(n-1) + 15 * (a(n-1)^2 + 1) mod 17^n for n > 1.