A286917 Numbers k such that there is an anti-divisor d of k satisfying sigma(d) = k.
3, 4, 13, 32, 40, 60, 121, 364, 1093, 3200, 3280, 9841, 15120, 16380, 29282, 29524, 88573, 91728, 264992, 265720, 797161, 2391484, 7174453, 21523360, 40098240, 64570081, 71495424, 78427440, 193690562, 193710244, 229909120, 581130733, 689727360, 1743392200, 5230176601
Offset: 1
Keywords
Examples
Anti-divisors of 60 are 7, 8, 11, 17, 24, 40 and sigma(24) = 60.
Programs
-
Maple
with(numtheory): P:= proc(q) local a,k,n; for n from 3 to q do a:=[]; for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then a:=[op(a),k]; fi; od; for k from 1 to nops(a) do if n=sigma(a[k]) then print(n); break; fi; od; od; end: P(10^4); # Paolo P. Lava, May 16 2017
-
PARI
isok(n) = {ad = select(t->n%t && t
Michel Marcus, May 20 2017
Formula
sigma(3^m) is in the sequence, as is sigma(3^m*(3^(m + 1) - 2)) for prime 3^(m + 1) - 2. - David A. Corneth, Jul 20 2020
Extensions
More terms from Michel Marcus, May 20 2017
a(22)-a(26) from Jinyuan Wang, Jul 20 2020
a(27)-a(35) from David A. Corneth, Jul 20 2020
Comments