A286954 Number of maximal irredundant sets in the n-cycle graph.
0, 2, 3, 6, 10, 11, 14, 14, 30, 62, 66, 99, 143, 212, 343, 478, 697, 992, 1501, 2246, 3251, 4776, 6969, 10283, 15210, 22297, 32727, 47984, 70644, 103961, 152706, 224382, 329508, 484451, 712274, 1046736, 1538164, 2260109, 3321932, 4882574, 7175738, 10545581
Offset: 1
Keywords
Examples
From _Andrew Howroyd_, Aug 16 2017: (Start) Case n=2: admissible words are 01 and 10, so a(2)=2. Case n=3: admissible words are 001, 010, 100, so a(3)=3. Case n=7: up to rotation, admissible words are 0010011 and 0010101, so a(7) = 7*2 = 14. (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- Eric Weisstein's World of Mathematics, Cycle Graph.
- Eric Weisstein's World of Mathematics, Maximal Irredundant Set.
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,1,0,-1,-2,-1,2,1,0,0,-1).
Programs
-
Mathematica
LinearRecurrence[{0, 1, 1, 1, 1, 0, -1, -2, -1, 2, 1, 0, 0, -1}, {0, 2, 3, 6, 10, 11, 14, 14, 30, 62, 66, 99, 143, 212}, 20] CoefficientList[Series[(x (2 + 3 x + 4 x^2 + 5 x^3 - 7 x^5 - 16 x^6 - 9 x^7 + 20 x^8 + 11 x^9 - 14 x^12))/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2 x^8 + x^9 - 2 x^10 - x^11 + x^14), {x, 0, 20}], x] Table[RootSum[1 - #^3 - 2 #^4 + #^5 + 2 #^6 + #^7 - #^9 - #^10 - #^11 - #^12 + #^14 &, #^n &], {n, 20}] RootSum[1 - #^3 - 2 #^4 + #^5 + 2 #^6 + #^7 - #^9 - #^10 - #^11 - #^12 + #^14 &, #^Range[20] &]
-
PARI
Vec((2 + 3*x + 4*x^2 + 5*x^3 - 7*x^5 - 16*x^6 - 9*x^7 + 20*x^8 + 11*x^9 - 14*x^12)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14)+O(x^40)) \\ Andrew Howroyd, Aug 16 2017
Formula
From Andrew Howroyd, Aug 16 2017: (Start)
a(n) = a(n-2) + a(n-3) + a(n-4) + a(n-5) - a(n-7) - 2*a(n-8) - a(n-9) + 2*a(n-10) + a(n-11) - a(n-14) for n > 14.
G.f.: x^2*(2 + 3*x + 4*x^2 + 5*x^3 - 7*x^5 - 16*x^6 - 9*x^7 + 20*x^8 + 11*x^9 - 14*x^12)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14).
a(p) = p * A291048(p) for p prime.
(End)
Extensions
a(1)-a(2) and terms a(21) and beyond from Andrew Howroyd, Aug 16 2017
Comments