cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A251419 Domination number of the n-triangle grid graph TG_n having n vertices along each side.

Original entry on oeis.org

1, 1, 2, 3, 3, 5, 6, 7, 9, 10, 13, 15, 17, 19, 21, 24, 27, 30, 33, 36, 40, 43, 47, 51, 55, 59, 63, 68, 72, 77, 82, 87, 92, 97, 103, 108, 114, 120, 126
Offset: 1

Views

Author

N. J. A. Sloane, Dec 04 2014

Keywords

Comments

a(n) is the minimum size of a dominating set of the triangular grid graph with n vertices along each side. - Andy Huchala, Mar 17 2024
Conjectured to equal floor((n^2 + 7n - 23)/14) for n >= 14. See A251418.

Crossrefs

Formula

G.f.: (x^22 - x^21 - x^19 + 2*x^18 - x^17 - x^14 + 2*x^13 - 2*x^11 + 2*x^10 - 2*x^9 + x^8 + x^7 - 2*x^6 + x^5 - x^3 + x^2 - x)/(x^9 - 2*x^8 + x^7 - x^2 + 2*x - 1) (conjectured, equivalent to Wagon's conjectural formula from comments). - Andy Huchala, Mar 15 2024

Extensions

a(32)-a(38) from Andy Huchala, Mar 14 2024
a(39) from Eric W. Weisstein, Dec 13 2024

A288721 Number of connected dominating sets in the n-triangular grid graph.

Original entry on oeis.org

1, 7, 32, 296, 5744, 227080, 18084720, 2883751336, 916819998880, 579403471332808, 726271886301488352, 1802717127912019473096, 8849500619057758939673040, 85830556827312530479498758296, 1643431935596454045971815328866560, 62082178562357221739454020443666212184
Offset: 0

Views

Author

Eric W. Weisstein, Jun 14 2017

Keywords

Crossrefs

Extensions

a(6)-a(15) from Andrew Howroyd, Sep 04 2017

A303049 Number of total dominating sets in the n-triangular grid graph.

Original entry on oeis.org

4, 32, 370, 10102, 547888, 57177700, 11840492228, 4851988794700, 3925043687686610, 6272313979455281150, 19802247395866119585902, 123501868366552999691029394, 1521619453753652011100192319196, 37035171896737433898000971545353724, 1780729821252117006470518879967287810584
Offset: 1

Views

Author

Eric W. Weisstein, Apr 17 2018

Keywords

Crossrefs

Extensions

Terms a(6) and beyond from Andrew Howroyd, Apr 17 2018

A027740 Number of independent subsets of nodes in graph formed from n-fold subdivision of triangle.

Original entry on oeis.org

1, 2, 4, 14, 60, 384, 3318, 40638, 689636, 16383974, 542420394, 25075022590, 1617185558560, 145563089994148, 18283036276489970, 3204638749437865046, 783848125594781710150, 267554112823378352976752
Offset: 0

Views

Author

Keywords

Comments

In other words, number of independent vertex sets (and vertex covers) in the (n-1)-triangular grid graph. - Eric W. Weisstein, Jun 14 2017
Number of planar n X n X n binary triangular grids with no more than 1 one in any similarly oriented 2 X 2 X 2 subtriangle. - R. H. Hardin, Dec 27 2008

Crossrefs

A297572 Number of minimum dominating sets in the n-triangular grid graph.

Original entry on oeis.org

1, 3, 6, 26, 2, 75, 89, 18, 108, 4, 9042, 10265, 10524, 138, 8, 72, 596, 4438, 390, 16, 55716
Offset: 0

Views

Author

Eric W. Weisstein, Dec 31 2017

Keywords

Crossrefs

Extensions

a(8)-a(10) from Andrew Howroyd, Jan 02 2018
Offset corrected and a(11)-a(20) from Andrew Howroyd, May 19 2018

A289902 Number of dominating sets in the n-triangular honeycomb acute knight graph.

Original entry on oeis.org

1, 1, 27, 441, 9261, 421875, 47177249, 10546683057, 4466853289709, 3723323714676297, 6207276939337266129, 20676801823320497569317, 136896643642841500100918369
Offset: 1

Views

Author

Eric W. Weisstein, Jul 14 2017

Keywords

Crossrefs

Extensions

a(8) from Andrew Howroyd, Jul 17 2017
a(9)-a(13) from Eric W. Weisstein, Feb 09 2024

A347639 Number of minimal dominating sets in the n-triangular grid graph.

Original entry on oeis.org

1, 3, 7, 27, 117, 1149, 9946, 147292, 2763601, 78714365, 2826640715
Offset: 0

Views

Author

Eric W. Weisstein, Sep 09 2021

Keywords

Crossrefs

Extensions

a(6)-a(10) from Andrew Howroyd, Jan 19 2022
Showing 1-7 of 7 results.