A287198 Numbers with the property that every cyclic permutation of its digits is a composite number with none of its permutations sharing any common prime factors.
4, 6, 8, 9, 25, 49, 52, 56, 58, 65, 85, 94, 116, 134, 145, 158, 161, 178, 187, 253, 275, 295, 325, 341, 358, 413, 451, 514, 527, 529, 532, 581, 583, 589, 611, 718, 752, 781, 815, 817, 835, 871, 895, 899, 952, 958, 989, 998, 1154, 1156, 1159, 1165, 1189, 1192
Offset: 1
Examples
The numbers formed by cyclic permutations of 134 are 341 and 413. The factors of 134 are 2 and 67, the factors of 341 are 11 and 31, and the factors of 413 are 7 and 59. Since these numbers are all composite and none share any common factors with each other, 134 is included on the list.
Links
- Luke Zieroth and Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 212 terms from Luke Zieroth)
Programs
-
Mathematica
ok[n_] := Catch@ Block[{t = FromDigits /@ (RotateLeft[IntegerDigits[n], #] & /@ Range[ IntegerLength@ n])}, If[! AllTrue[t, CompositeQ], Throw@False]; Do[ If[ GCD[t[[i]], t[[j]]] > 1, Throw@False], {i, Length@t}, {j, i-1}]; True]; Select[ Range@ 1200, ok] (* Giovanni Resta, May 25 2017 *)
-
PARI
is(n) = {my(d=digits(n), v=vector(#d)); v[1]=n; if(isprime(n)||n==10, return(0)); for(i=2, #d, v[i] = v[i-1]\10; v[i] = v[i]+(v[i-1]-v[i]*10)*10^(#d-1); if(isprime(v[i]), return(0)); for(j=1,i-1,if(gcd(v[j], v[i])>1, return(0)))); n>1} \\ David A. Corneth, May 25 2017
-
Python
from gmpy2 import is_prime, gcd, mpz A287198_list, n = [], 2 while n <= 10**6: s = str(n) if not is_prime(n) and '0' not in s: k = n for i in range(len(s)-1): s = s[1:]+s[0] m = mpz(s) if is_prime(m) or gcd(k,m) > 1: break k *= m else: A287198_list.append(n) n += 1 # Chai Wah Wu, May 27 2017
Comments