A287314 Triangle read by rows, the coefficients of the polynomials generating the columns of A287316.
1, 0, 1, 0, -1, 2, 0, 4, -9, 6, 0, -33, 82, -72, 24, 0, 456, -1225, 1250, -600, 120, 0, -9460, 27041, -30600, 17700, -5400, 720, 0, 274800, -826336, 1011017, -661500, 249900, -52920, 5040, 0, -10643745, 33391954, -43471624, 31149496, -13524000, 3622080, -564480, 40320
Offset: 0
Examples
Triangle starts: [0] 1 [1] 0, 1 [2] 0, -1, 2 [3] 0, 4, -9, 6 [4] 0, -33, 82, -72, 24 [5] 0, 456, -1225, 1250, -600, 120 [6] 0, -9460, 27041, -30600, 17700, -5400, 720 [7] 0, 274800, -826336, 1011017, -661500, 249900, -52920, 5040 ... For example let p4(x) = -33*x + 82*x^2 - 72*x^3 + 24*x^4 then p4(n) = A169712(n).
Crossrefs
Programs
-
Maple
A287314_row := proc(n) local k; sum(z^k/k!^2, k = 0..infinity); series(%^x, z=0, n+1): n!^2*coeff(%,z,n); seq(coeff(%,x,k), k=0..n) end: for n from 0 to 8 do print(A287314_row(n)) od; A287314_poly := proc(n) local k, x; sum(z^k/k!^2, k = 0..infinity); series(%^x, z=0, n+1): unapply(n!^2*coeff(%, z, n), x) end: for n from 0 to 7 do A287314_poly(n) od;
-
Mathematica
nn = 10; e[x_] := Sum[x^n/n!^2, {n, 0, nn}]; f[list_] := CoefficientList[InterpolatingPolynomial[Table[{i, list[[i]]}, {i, 1, nn}], m], m];Drop[Map[f,Transpose[Table[Table[n!^2, {n, 0, nn}] CoefficientList[ Series[e[x]^k, {x, 0, nn}], x], {k, 1, nn}]]], -1] // Grid (* Geoffrey Critzer, Jan 22 2021 *)
Comments