A287649 Number of horizontally symmetric diagonal Latin squares of order 2n with the first row in ascending order.
0, 2, 64, 3612672, 82731715264512
Offset: 1
Examples
Horizontally symmetric diagonal Latin square: 0 1 2 3 4 5 4 2 0 5 3 1 5 4 3 2 1 0 2 5 4 1 0 3 3 0 1 4 5 2 1 3 5 0 2 4 Vertically symmetric diagonal Latin square: 0 1 2 3 4 5 4 2 5 0 3 1 3 5 1 2 0 4 5 3 0 4 1 2 2 4 3 1 5 0 1 0 4 5 2 3
Links
- S. E. Kochemazov, E. I. Vatutin, and O. S. Zaikin, Fast Algorithm for Enumerating Diagonal Latin Squares of Small Order, arXiv:1709.02599 [math.CO], 2017.
- E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian)
- E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru, continuation (in Russian)
- E. I. Vatutin, S. E. Kochemazov, and O. S. Zaikin, Estimating of combinatorial characteristics for diagonal Latin squares, Recognition — 2017 (2017), pp. 98-100 (in Russian)
- E. I. Vatutin, S. E. Kochemazov, and O. S. Zaikin, On Some Features of Symmetric Diagonal Latin Squares, CEUR WS, vol. 1940 (2017), pp. 74-79.
- Eduard I. Vatutin, Stepan E. Kochemazov, Oleq S. Zaikin, Maxim O. Manzuk, Natalia N. Nikitina, and Vitaly S. Titov, Central symmetry properties for diagonal Latin squares, Problems of Information Technology (2019) No. 2, 3-8.
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and V. S. Titov, Investigation of the properties of symmetric diagonal Latin squares, Proceedings of the 10th multiconference on control problems (2017), vol. 3, pp. 17-19 (in Russian)
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and V. S. Titov, Investigation of the properties of symmetric diagonal Latin squares. Working on errors, Intellectual and Information Systems (2017), pp. 30-36 (in Russian)
- E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- Index entries for sequences related to Latin squares and rectangles.
Formula
a(n) = A292516(n) / (2*n)!.
a(n) = (A296060(n) + A287650(n/2))/2 for even n; a(n) = A296060(n)/2 for odd n. - Andrew Howroyd, May 28 2021
Extensions
a(5) calculated and added by Eduard I. Vatutin, S. E. Kochemazov and O. S. Zaikin, Jun 15 2017
Comments