cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A309599 Number of extended self-orthogonal diagonal Latin squares of order n.

Original entry on oeis.org

1, 0, 0, 48, 480, 0, 1290240, 185794560, 8867730493440, 1852743352320000
Offset: 1

Views

Author

Eduard I. Vatutin, Aug 09 2019

Keywords

Comments

A self-orthogonal diagonal Latin square (SODLS) is a diagonal Latin square orthogonal to its transpose. An extended self-orthogonal diagonal Latin square (ESODLS) is a diagonal Latin square that has an orthogonal diagonal Latin square from the same main class. SODLS is a special case of ESODLS.
A333671(n) <= A287762(n) <= a(n) <= A305571(n). - Eduard I. Vatutin, Jun 07 2020
a(10) >= 1852743352320000. - Eduard I. Vatutin, Jul 10 2020

Examples

			The diagonal Latin square
  0 1 2 3 4 5 6 7 8 9
  1 2 0 4 5 7 9 8 6 3
  5 0 1 6 3 9 8 2 4 7
  9 3 5 8 2 1 7 4 0 6
  4 6 3 5 7 8 0 9 2 1
  8 4 6 9 1 3 2 5 7 0
  7 8 9 0 6 4 5 1 3 2
  2 9 4 7 8 0 3 6 1 5
  6 5 7 1 0 2 4 3 9 8
  3 7 8 2 9 6 1 0 5 4
has orthogonal diagonal Latin square
  0 1 2 3 4 5 6 7 8 9
  3 5 9 8 6 2 0 1 4 7
  4 3 8 7 2 1 9 0 5 6
  6 9 3 4 8 0 1 2 7 5
  7 2 0 1 9 3 5 8 6 4
  2 0 1 5 7 6 4 9 3 8
  8 6 4 2 0 9 7 5 1 3
  1 7 6 0 5 4 8 3 9 2
  9 8 5 6 1 7 3 4 2 0
  5 4 7 9 3 8 2 6 0 1
from the same main class.
		

Crossrefs

Extensions

a(9) calculated by Eduard I. Vatutin, Dec 08 2020, independently checked by Oleg S. Zaikin, Dec 16 2024, added by Eduard I. Vatutin, Jan 30 2025
a(10) added by Eduard I. Vatutin, Oleg S. Zaikin, Jan 30 2025

A287761 Number of self-orthogonal diagonal Latin squares of order n with the first row in ascending order.

Original entry on oeis.org

1, 0, 0, 2, 4, 0, 64, 1152, 224832, 234255360
Offset: 1

Views

Author

Eduard I. Vatutin, May 31 2017

Keywords

Comments

A self-orthogonal diagonal Latin square is a diagonal Latin square orthogonal to its transpose.
A333367(n) <= a(n) <= A309598(n) <= A305570(n). - Eduard I. Vatutin, Apr 26 2020

Examples

			0 1 2 3 4 5 6 7 8 9
5 2 0 9 7 8 1 4 6 3
9 5 7 1 8 6 4 3 0 2
7 8 6 4 9 2 5 1 3 0
8 9 5 0 3 4 2 6 7 1
3 6 9 5 2 1 7 0 4 8
4 3 1 7 6 0 8 2 9 5
6 7 8 2 5 3 0 9 1 4
2 0 4 6 1 9 3 8 5 7
1 4 3 8 0 7 9 5 2 6
		

Crossrefs

Formula

a(n) = A287762(n)/n!.
From Eduard I. Vatutin, Mar 14 2020: (Start)
a(i) != A329685(i)*A299784(i)/2 for i=1..9 due to the existence of doubly self-orthogonal diagonal Latin square (DSODLS) and/or generalized symmetries (automorphisms) for some SODLS.
a(10) = A329685(10)*A299784(10)/2 because no DSODLS exist for order n=10 and no SODLS of order n=10 have generalized symmetries (automorphisms). (End)

Extensions

a(10) from Eduard I. Vatutin, Mar 14 2020
a(10) corrected by Eduard I. Vatutin, Apr 24 2020

A329685 Number of main classes of self-orthogonal diagonal Latin squares of order n.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 2, 8, 470, 30502
Offset: 1

Views

Author

Eduard I. Vatutin, Feb 25 2020

Keywords

Comments

A self-orthogonal diagonal Latin square is a diagonal Latin square orthogonal to its transpose.
A333366(n) <= a(n) <= A309210(n) <= A330391(n). - Eduard I. Vatutin, Apr 26 2020

Examples

			0 1 2 3 4 5 6 7 8 9
5 2 0 9 7 8 1 4 6 3
9 5 7 1 8 6 4 3 0 2
7 8 6 4 9 2 5 1 3 0
8 9 5 0 3 4 2 6 7 1
3 6 9 5 2 1 7 0 4 8
4 3 1 7 6 0 8 2 9 5
6 7 8 2 5 3 0 9 1 4
2 0 4 6 1 9 3 8 5 7
1 4 3 8 0 7 9 5 2 6
		

Crossrefs

Extensions

a(9) from Eduard I. Vatutin, Mar 12 2020
a(10) from Eduard I. Vatutin, Mar 14 2020
a(10) corrected by Natalia Makarova, Apr 10 2020

A333671 Number of doubly self-orthogonal diagonal Latin squares of order n.

Original entry on oeis.org

1, 0, 0, 48, 480, 0, 322560, 46448640, 10381271040, 0
Offset: 1

Views

Author

Eduard I. Vatutin, Apr 01 2020

Keywords

Comments

A doubly self-orthogonal diagonal Latin square (DSODLS) is a diagonal Latin square orthogonal to its transpose and antitranspose.
a(n) <= A287762(n) <= A309599(n) <= A305571(n). - Eduard I. Vatutin, Jun 06 2020

Examples

			0 1 2 3 4 5 6 7 8
2 4 3 0 7 6 8 1 5
4 6 7 1 8 2 3 5 0
8 3 5 6 0 7 1 2 4
7 8 1 4 5 3 0 6 2
3 7 0 2 1 8 5 4 6
1 5 4 7 6 0 2 8 3
5 0 6 8 2 1 4 3 7
6 2 8 5 3 4 7 0 1
		

Crossrefs

Showing 1-4 of 4 results.