A287764 Number of main classes of diagonal Latin squares of order n.
1, 0, 0, 1, 2, 2, 972, 4873096, 3292326155394
Offset: 1
Links
- A. D. Belyshev, Discussion about properties of diagonal Latin squares (in Russian)
- E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- E. I. Vatutin, A. D. Belyshev, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian)
- E. I. Vatutin, Enumerating the diagonal Latin squares of order 8 using equivalence classes of X-based fillings of diagonals and ESODLS-schemas (in Russian)
- E. I. Vatutin, Enumerating the diagonal Latin squares of order 9 using Gerasim@Home volunteer distributed computing project, equivalence classes of X-based fillings of diagonals and ESODLS-schemas (in Russian)
- E. Vatutin, A. Belyshev, S. Kochemazov, O. Zaikin, N. Nikitina, Enumeration of isotopy classes of diagonal Latin squares of small order using volunteer computing, Supercomputing Days Russia 2018, Moscow, Moscow State University, 2018, pp. 933-942.
- Eduard Vatutin, Alexey Belyshev, Stepan Kochemazov, Oleg Zaikin, Natalia Nikitina, Enumeration of Isotopy Classes of Diagonal Latin Squares of Small Order Using Volunteer Computing, Russian Supercomputing Days (Суперкомпьютерные дни в России), 2018.
- E. Vatutin, A. Belyshev, S. Kochemazov, O. Zaikin, N. Nikitina, Enumeration of isotopy classes of diagonal Latin squares of small order using volunteer computing, Communications in Computer and Information Science. Vol. 965. Springer, 2018. pp. 578-586.
- E. I. Vatutin, A. D. Belyshev, N. N. Nikitina, and M. O. Manzuk, Use of X-based diagonal fillings and ESODLS CMS schemes for enumeration of main classes of diagonal Latin squares, Telecommunications, 2023, No. 1, pp. 2-16, DOI: 10.31044/1684-2588-2023-0-1-2-16 (in Russian).
- Eduard I. Vatutin, Natalia N. Nikitina, Maxim O. Manzuk, First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch. Third independent confirmation of the previously calculated value a(9) (in Russian).
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2021). Tula, 2021. pp. 7-17. (in Russian)
- Index entries for sequences related to Latin squares and rectangles
Extensions
a(9) from Eduard I. Vatutin, Jul 06 2019