cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A274171 Number of diagonal Latin squares of order n with the first row in order.

Original entry on oeis.org

1, 0, 0, 2, 8, 128, 171200, 7447587840, 5056994653507584
Offset: 1

Views

Author

Eduard I. Vatutin, Jul 07 2016

Keywords

Comments

A diagonal Latin square is a Latin square in which both the main diagonal and main antidiagonal contain each element. - Andrew Howroyd, Sep 29 2020

Examples

			The a(4) = 2 diagonal Latin squares are:
   0 1 2 3   0 1 2 3
   2 3 0 1   3 2 1 0
   3 2 1 0   1 0 3 2
   1 0 3 2   2 3 0 1
.
The a(5) = 8 diagonal Latin squares are:
   0 1 2 3 4   0 1 2 3 4   0 1 2 3 4   0 1 2 3 4
   1 3 4 2 0   1 4 3 0 2   2 3 4 0 1   2 4 1 0 3
   4 2 1 0 3   3 2 1 4 0   4 0 1 2 3   4 0 3 2 1
   2 0 3 4 1   4 3 0 2 1   1 2 3 4 0   3 2 4 1 0
   3 4 0 1 2   2 0 4 1 3   3 4 0 1 2   1 3 0 4 2
.
   0 1 2 3 4   0 1 2 3 4   0 1 2 3 4   0 1 2 3 4
   3 4 0 1 2   3 4 1 2 0   4 2 0 1 3   4 2 3 0 1
   1 2 3 4 0   4 2 3 0 1   1 4 3 2 0   3 4 1 2 0
   4 0 1 2 3   2 0 4 1 3   3 0 1 4 2   1 3 0 4 2
   2 3 4 0 1   1 3 0 4 2   2 3 4 0 1   2 0 4 1 3
		

Crossrefs

Formula

a(n) = A274806(n)/n!.

Extensions

a(9) added from Vatutin et al. (2016) by Max Alekseyev, Oct 05 2016
a(9) corrected by Eduard I. Vatutin, Oct 20 2016

A274806 Number of diagonal Latin squares of order n.

Original entry on oeis.org

1, 0, 0, 48, 960, 92160, 862848000, 300286741708800, 1835082219864832081920
Offset: 1

Views

Author

Eduard I. Vatutin, Jul 07 2016

Keywords

Comments

A diagonal Latin square is a Latin square in which both the main diagonal and main antidiagonal contain each element. - Andrew Howroyd, Oct 05 2020

Crossrefs

Formula

a(n) = A274171(n) * n!.

Extensions

a(9) from Vatutin et al. (2016) added by Max Alekseyev, Oct 05 2016
a(9) corrected by Eduard I. Vatutin, Oct 20 2016

A344105 a(n) is the number of distinct numbers of transversals of order n diagonal Latin squares.

Original entry on oeis.org

1, 0, 0, 1, 2, 1, 32, 73, 406
Offset: 1

Views

Author

Eduard I. Vatutin, Jun 22 2021

Keywords

Comments

a(n) <= A287644(n) - A287645(n) + 1.
a(n) <= A287764(n).
Diagonal Latin squares are a special case of Latin squares, so a(n) <= A309344(n).
a(10) >= 459, a(11) >= 6437, a(12) >= 23707, a(13) >= 75891, a(14) >= 290681. - Eduard I. Vatutin, Oct 29 2021, updated Mar 01 2025
For all spectra of even orders all known values included in them are divisible by 2. For all spectra of orders n=6, n=10 and n=14 (and probably for all n=4k+2) all known values included in the corresponding spectra are divisible by 4. This leads to the following hypothesis: a(2k) <= (A287644(2k) - A287645(2k) + 2)/2 and a(4k+2) <= (A287644(4k+2) - A287645(4k+2) + 4)/4, where w(n) = A287644(n) - A287645(n) + 1 is a width of corresponding spectra and (w(n)+1)/2 is done to round the result of the division up. - Eduard I. Vatutin, Mar 21 2022

Examples

			For n=7 the number of transversals that a diagonal Latin square of order 7 may have is 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 41, 43, 45, 47, 55, or 133. Since there are 32 distinct values, a(7)=32.
		

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Jul 14 2021
a(9) added by Eduard I. Vatutin, Nov 20 2022

A345760 a(n) is the number of distinct numbers of intercalates of order n diagonal Latin squares.

Original entry on oeis.org

0, 0, 0, 1, 2, 1, 21, 61, 64
Offset: 1

Views

Author

Eduard I. Vatutin, Jun 26 2021

Keywords

Comments

a(n) <= A307164(n) - A307163(n) + 1.
a(n) <= A287764(n).
a(10) >= 98, a(11) >= 145, a(12) >= 259, a(13) >= 200, a(14) >= 362, a(15) >= 536, a(16) >= 792, a(17) >= 685, a(18) >= 535, a(19) >= 447, a(20) >= 1011, a(21) >= 747, a(22) >= 872, a(23) >= 885, a(24) >= 1610, a(25) >= 1677, a(26) >= 1266, a(27) >= 1337, a(28) >= 2795. - Eduard I. Vatutin, Oct 02 2021, updated Mar 02 2025

Examples

			For n=7 the number of intercalates that a diagonal Latin square of order 7 may have is 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 26, or 30. Since there are 21 distinct values, a(7)=21.
		

Crossrefs

Extensions

a(9) added by Eduard I. Vatutin, Oct 22 2022

A345370 a(n) is the number of distinct numbers of diagonal transversals that a diagonal Latin square of order n can have.

Original entry on oeis.org

1, 0, 0, 1, 2, 2, 14, 47, 182
Offset: 1

Views

Author

Eduard I. Vatutin, Jun 16 2021

Keywords

Comments

a(n) <= A287648(n) - A287647(n) + 1.
a(n) <= A287764(n).
Conjecture: a(12) = A287648(12) - A287647(12) + 1. - Natalia Makarova, Oct 26 2021
a(10) >= 736, a(11) >= 1344, a(12) >= 17693, a(13) >= 18241, a(14) >= 294053, a(15) >= 1958394, a(16) >= 13715. - Eduard I. Vatutin, Oct 29 2021, updated Mar 02 2025

Examples

			For n=7 the number of diagonal transversals that a diagonal Latin square of order 7 may have is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, or 27. Since there are 14 distinct values, a(7)=14.
		

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Jul 15 2021
a(9) added by Eduard I. Vatutin, Oct 20 2022

A299784 Maximum size of a main class for diagonal Latin squares of order n with the first row in ascending order.

Original entry on oeis.org

1, 0, 0, 2, 4, 96, 192, 1536, 1536, 15360, 15360, 184320, 184320, 2580480, 2580480
Offset: 1

Views

Author

Eduard I. Vatutin, Jan 21 2019

Keywords

Comments

a(n) <= 2^m * m! * 4, where m = floor(n/2).
It seems that a(n) = 2^m * m! * 4 for all n > 6. - Eduard I. Vatutin, Jun 08 2020
0 <= A299783(n) <= a(n). - Eduard I. Vatutin, Jun 08 2020

Examples

			From _Eduard I. Vatutin_, May 30 2021: (Start)
The following DLS of order 9 has a main class with cardinality 1536:
  0 1 2 3 4 5 6 7 8
  1 2 0 4 8 6 5 3 7
  7 4 5 8 0 3 2 6 1
  5 8 7 6 1 0 3 2 4
  8 0 3 2 7 1 4 5 6
  3 7 8 5 6 4 1 0 2
  6 3 1 7 5 2 8 4 0
  2 6 4 0 3 8 7 1 5
  4 5 6 1 2 7 0 8 3
The following DLS of order 10 has a main class with cardinality 15360:
  0 1 2 3 4 5 6 7 8 9
  1 2 0 4 5 3 9 8 6 7
  3 5 6 1 8 7 4 0 9 2
  9 4 7 8 3 2 1 6 0 5
  2 7 3 0 9 8 5 1 4 6
  6 8 5 9 2 4 7 3 1 0
  4 6 9 7 0 1 3 2 5 8
  7 0 4 6 1 9 8 5 2 3
  8 3 1 5 6 0 2 9 7 4
  5 9 8 2 7 6 0 4 3 1
(End)
		

Crossrefs

Formula

a(n) = A299787(n) / n!.
From Eduard I. Vatutin, May 30 2021: (Start)
A299783(n) = a(n) for 1 <= n <= 5.
A299783(6)*3 = a(6).
A299783(7)*6 = a(7).
A299783(8)*16 = a(8).
A299783(9)*32 <= a(9).
A299783(10)*10 <= a(10).
A299783(11)*10 <= a(11).
A299783(12)*4 <= a(12).
A299783(13)*24 <= a(13). (End)

Extensions

a(9)-a(10) from Eduard I. Vatutin, Mar 15 2020
a(11)-a(15) from Eduard I. Vatutin, Jun 08 2020

A330391 Number of main classes of diagonal Latin squares of order n with at least one orthogonal diagonal mate.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 5, 1105, 75307
Offset: 1

Views

Author

Eduard I. Vatutin, Feb 25 2020

Keywords

Crossrefs

Formula

a(n) = A287764(n) - A337309(n).

Extensions

a(9) added by Eduard I. Vatutin, Dec 12 2020

A340546 Number of main classes of diagonal Latin squares of order 2n that contain a one-plane symmetric square.

Original entry on oeis.org

0, 1, 2, 9717
Offset: 1

Views

Author

Eduard I. Vatutin, Jan 11 2021

Keywords

Comments

A one-plane symmetric diagonal Latin square is a vertically or horizontally symmetric diagonal Latin square (see A296060). Such diagonal Latin squares do not exist for odd orders > 1.

Examples

			A horizontally symmetric diagonal Latin square:
  0 1 2 3 4 5
  4 2 0 5 3 1
  5 4 3 2 1 0
  2 5 4 1 0 3
  3 0 1 4 5 2
  1 3 5 0 2 4
A vertically symmetric diagonal Latin square:
  0 1 2 3 4 5
  4 2 5 0 3 1
  3 5 1 2 0 4
  5 3 0 4 1 2
  2 4 3 1 5 0
  1 0 4 5 2 3
Both are one-plane symmetric diagonal Latin squares.
		

Crossrefs

Extensions

Name clarified by Andrew Howroyd, Oct 22 2023

A299783 Minimum size of a main class for diagonal Latin squares of order n with the first row in ascending order.

Original entry on oeis.org

1, 0, 0, 2, 4, 32, 32, 96
Offset: 1

Views

Author

Eduard I. Vatutin, Jan 21 2019

Keywords

Comments

a(9) <= 48; a(10) <= 1536, a(11) <= 1536, a(12) <= 46080, a(13) <= 7680. - Eduard I. Vatutin, Oct 05 2020, updated Apr 08 2025

Examples

			From _Eduard I. Vatutin_, Oct 05 2020: (Start)
The following DLS of order 9 has a main class with cardinality 48:
  0 1 2 3 4 5 6 7 8
  2 4 3 0 7 6 8 1 5
  6 2 8 5 3 4 7 0 1
  4 6 7 1 8 2 3 5 0
  1 5 4 7 6 0 2 8 3
  7 8 1 4 5 3 0 6 2
  3 7 0 2 1 8 5 4 6
  8 3 5 6 0 7 1 2 4
  5 0 6 8 2 1 4 3 7
The following DLS of order 10 has a main class with cardinality 7680:
  0 1 2 3 4 5 6 7 8 9
  1 2 0 4 3 6 5 9 7 8
  2 0 3 5 8 1 4 6 9 7
  4 6 9 7 1 8 2 0 3 5
  9 7 8 6 5 4 3 1 2 0
  3 4 7 8 0 9 1 2 5 6
  6 9 4 1 7 2 8 5 0 3
  7 8 5 0 6 3 9 4 1 2
  5 3 1 9 2 7 0 8 6 4
  8 5 6 2 9 0 7 3 4 1
(End)
		

Crossrefs

Formula

a(n) = A299785(n) / n!.
0 <= a(n) <= A299784(n). - Eduard I. Vatutin, Jun 08 2020
From Eduard I. Vatutin, added May 30 2021, updated Apr 08 2025: (Start)
a(n) = A299784(n) for 1 <= n <= 5.
a(6)*3 = A299784(6).
a(7)*6 = A299784(7).
a(8)*16 = A299784(8).
a(9)*32 <= A299784(9).
a(10)*10 <= A299784(10).
a(11)*10 <= A299784(11).
a(12)*4 <= A299784(12).
a(13)*24 <= A299784(13). (End)

A299787 Maximum size of a main class for diagonal Latin squares of order n.

Original entry on oeis.org

1, 0, 0, 48, 480, 69120, 967680, 61931520, 557383680, 55738368000, 613122048000, 88289574912000, 1147764473856000, 224961836875776000, 3374427553136640000
Offset: 1

Views

Author

Eduard I. Vatutin, Jan 21 2019

Keywords

Comments

a(n) <= 2^m * m! * 4 * n!, where m = floor(n/2).
It seems that a(n) = 2^m * m! * 4 * n! for all n>6. - Eduard I. Vatutin, Jun 08 2020
0 <= A299785(n) <= a(n). - Eduard I. Vatutin, Jul 06 2020

Examples

			From _Eduard I. Vatutin_, May 31 2021: (Start)
The following DLS of order 9 has a main class with cardinality 1536*9! = 557383680:
  0 1 2 3 4 5 6 7 8
  1 2 0 4 8 6 5 3 7
  7 4 5 8 0 3 2 6 1
  5 8 7 6 1 0 3 2 4
  8 0 3 2 7 1 4 5 6
  3 7 8 5 6 4 1 0 2
  6 3 1 7 5 2 8 4 0
  2 6 4 0 3 8 7 1 5
  4 5 6 1 2 7 0 8 3
The following DLS of order 10 has a main class with cardinality 15360*10! = 55738368000:
  0 1 2 3 4 5 6 7 8 9
  1 2 0 4 5 3 9 8 6 7
  3 5 6 1 8 7 4 0 9 2
  9 4 7 8 3 2 1 6 0 5
  2 7 3 0 9 8 5 1 4 6
  6 8 5 9 2 4 7 3 1 0
  4 6 9 7 0 1 3 2 5 8
  7 0 4 6 1 9 8 5 2 3
  8 3 1 5 6 0 2 9 7 4
  5 9 8 2 7 6 0 4 3 1
(End)
		

Crossrefs

Formula

a(n) = A299784(n) * n!.
From Eduard I. Vatutin, May 31 2021: (Start)
a(n) = A299785(n) for 1 <= n <= 5.
a(6) = A299785(6)*3.
a(7) = A299785(7)*6.
a(8) = A299785(8)*16.
a(9) = A299785(9)*32.
a(10) = A299785(10)*2.
a(11) = A299785(11)*10.
a(12) = A299785(12)*4.
a(13) = A299785(13)*24. (End)

Extensions

a(9)-a(10) from Eduard I. Vatutin, Mar 15 2020
a(11)-a(15) from Eduard I. Vatutin, Jun 08 2020
Showing 1-10 of 17 results. Next