A287649
Number of horizontally symmetric diagonal Latin squares of order 2n with the first row in ascending order.
Original entry on oeis.org
0, 2, 64, 3612672, 82731715264512
Offset: 1
Horizontally symmetric diagonal Latin square:
0 1 2 3 4 5
4 2 0 5 3 1
5 4 3 2 1 0
2 5 4 1 0 3
3 0 1 4 5 2
1 3 5 0 2 4
Vertically symmetric diagonal Latin square:
0 1 2 3 4 5
4 2 5 0 3 1
3 5 1 2 0 4
5 3 0 4 1 2
2 4 3 1 5 0
1 0 4 5 2 3
- S. E. Kochemazov, E. I. Vatutin, and O. S. Zaikin, Fast Algorithm for Enumerating Diagonal Latin Squares of Small Order, arXiv:1709.02599 [math.CO], 2017.
- E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian)
- E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru, continuation (in Russian)
- E. I. Vatutin, S. E. Kochemazov, and O. S. Zaikin, Estimating of combinatorial characteristics for diagonal Latin squares, Recognition — 2017 (2017), pp. 98-100 (in Russian)
- E. I. Vatutin, S. E. Kochemazov, and O. S. Zaikin, On Some Features of Symmetric Diagonal Latin Squares, CEUR WS, vol. 1940 (2017), pp. 74-79.
- Eduard I. Vatutin, Stepan E. Kochemazov, Oleq S. Zaikin, Maxim O. Manzuk, Natalia N. Nikitina, and Vitaly S. Titov, Central symmetry properties for diagonal Latin squares, Problems of Information Technology (2019) No. 2, 3-8.
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and V. S. Titov, Investigation of the properties of symmetric diagonal Latin squares, Proceedings of the 10th multiconference on control problems (2017), vol. 3, pp. 17-19 (in Russian)
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and V. S. Titov, Investigation of the properties of symmetric diagonal Latin squares. Working on errors, Intellectual and Information Systems (2017), pp. 30-36 (in Russian)
- E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- Index entries for sequences related to Latin squares and rectangles.
a(5) calculated and added by
Eduard I. Vatutin, S. E. Kochemazov and O. S. Zaikin, Jun 15 2017
A292516
Number of horizontally symmetric diagonal Latin squares of order 2n.
Original entry on oeis.org
0, 48, 46080, 145662935040, 300216848351861145600
Offset: 1
Horizontally symmetric diagonal Latin square:
0 1 2 3 4 5
4 2 0 5 3 1
5 4 3 2 1 0
2 5 4 1 0 3
3 0 1 4 5 2
1 3 5 0 2 4
Vertically symmetric diagonal Latin square:
0 1 2 3 4 5
4 2 5 0 3 1
3 5 1 2 0 4
5 3 0 4 1 2
2 4 3 1 5 0
1 0 4 5 2 3
- E. I. Vatutin, S. E. Kochemazov, and O. S. Zaikin, On Some Features of Symmetric Diagonal Latin Squares, CEUR WS, vol. 1940 (2017), pp. 74-79.
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and V. S. Titov, Investigation of the properties of symmetric diagonal Latin squares, Proceedings of the 10th multiconference on control problems (2017), vol. 3, pp. 17-19 (in Russian)
- E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian)
- Eduard I. Vatutin, Stepan E. Kochemazov, Oleq S. Zaikin, Maxim O. Manzuk, Natalia N. Nikitina, and Vitaly S. Titov, Central symmetry properties for diagonal Latin squares, Problems of Information Technology (2019) No. 2, 3-8.
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and V. S. Titov, Investigation of the properties of symmetric diagonal Latin squares. Working on errors, Intellectual and Information Systems (2017), pp. 30-36 (in Russian)
- E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- Index entries for sequences related to Latin squares and rectangles.
A296060
Number of one-plane symmetric diagonal Latin squares of order 2n with first row 0,1,...,2n-1.
Original entry on oeis.org
0, 2, 128, 7213056
Offset: 1
A horizontally symmetric diagonal Latin square:
0 1 2 3 4 5
4 2 0 5 3 1
5 4 3 2 1 0
2 5 4 1 0 3
3 0 1 4 5 2
1 3 5 0 2 4
A vertically symmetric diagonal Latin square:
0 1 2 3 4 5
4 2 5 0 3 1
3 5 1 2 0 4
5 3 0 4 1 2
2 4 3 1 5 0
1 0 4 5 2 3
A doubly symmetric diagonal Latin square:
0 1 2 3 4 5 6 7
3 2 7 6 1 0 5 4
2 3 1 0 7 6 4 5
6 7 5 4 3 2 0 1
7 6 3 2 5 4 1 0
4 5 0 1 6 7 2 3
5 4 6 7 0 1 3 2
1 0 4 5 2 3 7 6
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and V. S. Titov, Investigation of the properties of symmetric diagonal Latin squares. Corrections, Intellectual and Information Systems (2017), pp. 30-36 (in Russian).
- Eduard I. Vatutin, Stepan E. Kochemazov, Oleq S. Zaikin, Maxim O. Manzuk, Natalia N. Nikitina, and Vitaly S. Titov, Central symmetry properties for diagonal Latin squares, Problems of Information Technology (2019) No. 2, 3-8.
- E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- Index entries for sequences related to Latin squares and rectangles
A296061
Number of one-plane symmetric diagonal Latin squares of order 2n.
Original entry on oeis.org
0, 96, 92160, 290830417920
Offset: 1
A horizontally symmetric diagonal Latin square:
0 1 2 3 4 5
4 2 0 5 3 1
5 4 3 2 1 0
2 5 4 1 0 3
3 0 1 4 5 2
1 3 5 0 2 4
A vertically symmetric diagonal Latin square:
0 1 2 3 4 5
4 2 5 0 3 1
3 5 1 2 0 4
5 3 0 4 1 2
2 4 3 1 5 0
1 0 4 5 2 3
A doubly symmetric diagonal Latin square:
0 1 2 3 4 5 6 7
3 2 7 6 1 0 5 4
2 3 1 0 7 6 4 5
6 7 5 4 3 2 0 1
7 6 3 2 5 4 1 0
4 5 0 1 6 7 2 3
5 4 6 7 0 1 3 2
1 0 4 5 2 3 7 6
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, V. S. Titov, Investigation of the properties of symmetric diagonal Latin squares. Corrections. Intellectual and Information Systems (2017), pp. 30-36 (in Russian)
- Eduard I. Vatutin, Stepan E. Kochemazov, Oleq S. Zaikin, Maxim O. Manzuk, Natalia N. Nikitina, Vitaly S. Titov, Central symmetry properties for diagonal Latin squares, Problems of Information Technology (2019) No. 2, 3-8.
- E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- Index entries for sequences related to Latin squares and rectangles
A340550
Number of main classes of diagonal Latin squares of order n that contain a doubly symmetric square.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 0, 47, 0, 0, 0
Offset: 1
An example of a doubly symmetric diagonal Latin square:
0 1 2 3 4 5 6 7
3 2 7 6 1 0 5 4
2 3 1 0 7 6 4 5
6 7 5 4 3 2 0 1
7 6 3 2 5 4 1 0
4 5 0 1 6 7 2 3
5 4 6 7 0 1 3 2
1 0 4 5 2 3 7 6
In the horizontal direction there is a one-to-one correspondence between elements 0 and 7, 1 and 6, 2 and 5, 3 and 4.
In the vertical direction there is also a correspondence between elements 0 and 1, 2 and 4, 6 and 7, 3 and 5.
Showing 1-5 of 5 results.
Comments