cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A287648 Maximum number of diagonal transversals in a diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 4, 5, 6, 27, 120, 333
Offset: 1

Views

Author

Eduard I. Vatutin, May 29 2017

Keywords

Comments

From Eduard I. Vatutin, Oct 04 2020: (Start)
A diagonal Latin square is a Latin square in which both the main diagonal and main antidiagonal contain each element.
A diagonal transversal is a transversal that includes exactly one element from the main diagonal and exactly one from the antidiagonal. For squares of odd orders, these elements can coincide at the intersection of the diagonals. (End)
A007016 is an upper bound for the number of diagonal transversals in a Latin square: A287647(n) <= a(n) <= A007016(n). - Eduard I. Vatutin, Jan 02 2020
a(11) >= 4828, a(12) >= 24901, a(13) >= 131106, a(14) >= 364596, a(15) >= 389318. - Natalia Makarova, Tomáš Brada, Harry White, Oct 04 2020
a(16) >= 32172800, a(18) >= 280308432. - Natalia Makarova, Tomáš Brada, Dec 25 2020
a(12) >= 28496. - Natalia Makarova, Harry White, Jan 23 2021
a(14) >= 380718, a(20) >= 90010806304, a(21) >= 51162162017, a(22) >= 3227747329246. The number of D-transversals for orders 20 - 22 was calculated by a volunteer. - Natalia Makarova, Tomáš Brada, Harry White, Mar 17 2021
All cyclic diagonal Latin squares (see A338562) are diagonal Latin squares, so A342997((n-1)/2) <= a(n). - Eduard I. Vatutin, Apr 26 2021
a(14) >= 383578, a(15) >= 398974. - Natalia Makarova, Tomáš Brada, Jan 13 2022
a(10) >= 890, a(12) >= 30192, a(14) >= 490218, a(15) >= 4620434, a(17) >= 204995269, a(18) >= 281593874, a(19) >= 11254190082. - Eduard I. Vatutin, Jul 22 2020, updated Mar 01 2025
For most orders n, at least one diagonal Latin square with the maximal number of diagonal transversals has an orthogonal mate and a(n) = A360220(n). Known exceptions: n=6 and n=10. - Eduard I. Vatutin, Feb 17 2023

Examples

			For example, the diagonal Latin square
  0 1 2 3
  3 2 1 0
  1 0 3 2
  2 3 0 1
has 4 diagonal transversals:
  0 . . .    . 1 . .    . . 2 .    . . . 3
  . . 1 .    . . . 0    3 . . .    . 2 . .
  . . . 2    . . 3 .    . 0 . .    1 . . .
  . 3 . .    2 . . .    . . . 1    . . 0 .
In addition there are 4 other transversals that are not diagonal transversals and are therefore not included here.
From _Natalia Makarova_, Oct 04 2020: (Start)
The following DLS of order 14 has 364596 diagonal transversals:
   0  7  6 11  9  3  4  5  2 12 13  8 10  1
   6  1 11  5 10 12  2  3  9  7  4 13  0  8
   5 11  2 12  8  1  7 10  0  6  9  3 13  4
  13  6  5  3  1 10  9 12  7  0  2  4  8 11
  12  3 10  1  4 13  8  6 11  5  0  7  2  9
  10 12  1  8  2  5 11 13  4  3  6  0  9  7
   9  2  7  0  5 11  6  8 13  4  1 10  3 12
   4 13  3  9  6  0 10  7  1  8 12  2 11  5
   2  4  9 10 11  6  1  0  8 13  7 12  5  3
   1 10  8 13 12  2  5  4  3  9 11  6  7  0
   3  5 12  7 13  8  0  1  6 11 10  9  4  2
   8  0 13  4  7  9  3  2 12 10  5 11  1  6
   7  9  0  6  3  4 13 11  5  2  8  1 12 10
  11  8  4  2  0  7 12  9 10  1  3  5  6 13
(End)
		

References

  • J. W. Brown, F. Cherry, L. Most, M. Most, E. T. Parker, and W. D. Wallis, Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics. 1992. Vol. 139. pp. 43-49.

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Oct 29 2017
a(9) added by Eduard I. Vatutin, Dec 08 2020

A287647 Minimum number of diagonal transversals in a diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 4, 1, 2, 0, 0, 0
Offset: 1

Views

Author

Eduard I. Vatutin, May 29 2017

Keywords

Comments

A007016 is an upper bound for the number of diagonal transversals in a Latin square: a(n) <= A287648(n) <= A007016(n). - Eduard I. Vatutin, Jan 02 2020
From Eduard I. Vatutin, Apr 26 2021: (Start)
A diagonal Latin square is a Latin square in which both the main diagonal and main antidiagonal contain each element.
A diagonal transversal is a transversal that includes exactly one element from the main diagonal and exactly one from the antidiagonal. For squares of odd orders, these elements can coincide at the intersection of the diagonals.
All cyclic diagonal Latin squares (see A338562) are diagonal Latin squares, so a(n) <= A342998((n-1)/2). (End)
a(10) <= 3, a(11) <= 43, a(12) = 0, a(13) <= 4756, a(14) <= 1446, a(15) <= 15510, a(16) <= 898988, a(17) <= 12058840, a(18) <= 82577875, a(19) <= 592174879, a(20) <= 4488686380. - Eduard I. Vatutin, Sep 26 2021, updated Jan 20 2025

Examples

			From _Eduard I. Vatutin_, Apr 26 2021: (Start)
For example, the diagonal Latin square
  0 1 2 3
  3 2 1 0
  1 0 3 2
  2 3 0 1
has 4 diagonal transversals:
  0 . . .    . 1 . .    . . 2 .    . . . 3
  . . 1 .    . . . 0    3 . . .    . 2 . .
  . . . 2    . . 3 .    . 0 . .    1 . . .
  . 3 . .    2 . . .    . . . 1    . . 0 .
In addition there are 4 other transversals that are not diagonal transversals and are therefore not included here. (End)
		

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Oct 29 2017
a(9) added by Eduard I. Vatutin, Sep 20 2020

A344105 a(n) is the number of distinct numbers of transversals of order n diagonal Latin squares.

Original entry on oeis.org

1, 0, 0, 1, 2, 1, 32, 73, 406
Offset: 1

Views

Author

Eduard I. Vatutin, Jun 22 2021

Keywords

Comments

a(n) <= A287644(n) - A287645(n) + 1.
a(n) <= A287764(n).
Diagonal Latin squares are a special case of Latin squares, so a(n) <= A309344(n).
a(10) >= 459, a(11) >= 6437, a(12) >= 23707, a(13) >= 75891, a(14) >= 290681. - Eduard I. Vatutin, Oct 29 2021, updated Mar 01 2025
For all spectra of even orders all known values included in them are divisible by 2. For all spectra of orders n=6, n=10 and n=14 (and probably for all n=4k+2) all known values included in the corresponding spectra are divisible by 4. This leads to the following hypothesis: a(2k) <= (A287644(2k) - A287645(2k) + 2)/2 and a(4k+2) <= (A287644(4k+2) - A287645(4k+2) + 4)/4, where w(n) = A287644(n) - A287645(n) + 1 is a width of corresponding spectra and (w(n)+1)/2 is done to round the result of the division up. - Eduard I. Vatutin, Mar 21 2022

Examples

			For n=7 the number of transversals that a diagonal Latin square of order 7 may have is 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 41, 43, 45, 47, 55, or 133. Since there are 32 distinct values, a(7)=32.
		

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Jul 14 2021
a(9) added by Eduard I. Vatutin, Nov 20 2022

A345760 a(n) is the number of distinct numbers of intercalates of order n diagonal Latin squares.

Original entry on oeis.org

0, 0, 0, 1, 2, 1, 21, 61, 64
Offset: 1

Views

Author

Eduard I. Vatutin, Jun 26 2021

Keywords

Comments

a(n) <= A307164(n) - A307163(n) + 1.
a(n) <= A287764(n).
a(10) >= 98, a(11) >= 145, a(12) >= 259, a(13) >= 200, a(14) >= 362, a(15) >= 536, a(16) >= 792, a(17) >= 685, a(18) >= 535, a(19) >= 447, a(20) >= 1011, a(21) >= 747, a(22) >= 872, a(23) >= 885, a(24) >= 1610, a(25) >= 1677, a(26) >= 1266, a(27) >= 1337, a(28) >= 2795. - Eduard I. Vatutin, Oct 02 2021, updated Mar 02 2025

Examples

			For n=7 the number of intercalates that a diagonal Latin square of order 7 may have is 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 26, or 30. Since there are 21 distinct values, a(7)=21.
		

Crossrefs

Extensions

a(9) added by Eduard I. Vatutin, Oct 22 2022

A349199 a(n) is the number of distinct numbers of diagonal transversals that an orthogonal diagonal Latin square of order n can have.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 3, 31, 165
Offset: 1

Views

Author

Eduard I. Vatutin, Nov 10 2021

Keywords

Comments

An orthogonal diagonal Latin square is a diagonal Latin square with at least one orthogonal diagonal mate. Since all orthogonal diagonal Latin squares are diagonal Latin squares, a(n) <= A345370(n).
a(10) >= 390, a(11) >= 560, a(12) >= 13429. - Eduard I. Vatutin, Nov 10 2021, updated Jan 29 2023

Examples

			For n=8 the number of diagonal transversals that an orthogonal diagonal Latin square of order 8 may have is 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 28, 30, 32, 36, 38, 40, 42, 44, 48, 52, 56, 64, 72, 88, 96, or 120. Since there are 31 distinct values, a(8)=31.
		

Crossrefs

A345761 a(n) is the number of distinct numbers of orthogonal diagonal mates that a diagonal Latin squares of order n can have.

Original entry on oeis.org

1, 0, 0, 1, 2, 1, 3, 31, 99
Offset: 1

Views

Author

Eduard I. Vatutin, Jun 26 2021

Keywords

Comments

a(n) <= A287695(n) + 1.
a(n) <= A287764(n).
a(10) >= 10. It seems that a(10) = 10 due to long computational experiments within the Gerasim@Home volunteer distributed computing project did not reveal the existence of diagonal Latin squares of order 10 with the number of orthogonal diagonal Latin squares different from {0, 1, 2, 3, 4, 5, 6, 7, 8, 10}.
a(11) >= 112, a(12) >= 5079. - Eduard I. Vatutin, Nov 02 2021, updated Jan 23 2023

Examples

			For n=7 the number of orthogonal diagonal Latin squares that a diagonal Latin square of order 7 may have is 0, 1, or 3. Since there are 3 distinct values, a(7)=3.
		

Crossrefs

A354068 Minimum number of diagonal transversals in an orthogonal diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 4, 5, 0, 8, 8, 14
Offset: 1

Views

Author

Eduard I. Vatutin, May 16 2022

Keywords

Comments

An orthogonal diagonal Latin square is a diagonal Latin square with at least one orthogonal diagonal mate.
a(10) <= 60, a(11) <= 279, a(12) <= 588, a(13) <= 9610.
Every orthogonal diagonal Latin square is a diagonal Latin square, so A287647(n) <= a(n) <= A360220(n) <= A287648(n). - Eduard I. Vatutin, Mar 03 2023

Examples

			One of the best orthogonal diagonal Latin squares of order n=9
  0 1 2 3 4 5 6 7 8
  1 2 3 8 6 4 7 0 5
  5 4 6 0 7 8 3 1 2
  7 3 1 5 2 6 0 8 4
  8 7 4 6 1 2 5 3 0
  3 0 5 4 8 7 1 2 6
  4 6 7 2 3 0 8 5 1
  6 5 8 1 0 3 2 4 7
  2 8 0 7 5 1 4 6 3
has orthogonal diagonal mate
  0 1 2 3 4 5 6 7 8
  2 3 8 7 5 6 4 1 0
  1 5 4 8 6 0 2 3 7
  8 7 0 6 1 3 5 4 2
  5 0 1 2 7 8 3 6 4
  4 6 7 0 3 2 8 5 1
  3 8 5 4 0 7 1 2 6
  7 4 6 5 2 1 0 8 3
  6 2 3 1 8 4 7 0 5
and 14 diagonal transversals, which is the minimal number, so a(9)=14.
		

Crossrefs

A366333 a(n) is the number of distinct numbers of diagonal transversals that a semicyclic diagonal Latin square of order 2n+1 can have.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 20, 0, 271, 1208, 0
Offset: 0

Views

Author

Eduard I. Vatutin, Oct 07 2023

Keywords

Comments

A horizontally semicyclic diagonal Latin square is a square where each row r(i) is a cyclic shift of the first row r(0) by some value d(i) (see example). A vertically semicyclic diagonal Latin square is a square where each column c(i) is a cyclic shift of the first column c(0) by some value d(i). Cyclic diagonal Latin squares (see A338562) fall under the definition of vertically and horizontally semicyclic diagonal Latin squares simultaneously, in this type of squares each row r(i) is obtained from the previous one r(i-1) using cyclic shift by some value d.
Semicyclic diagonal Latin squares do not exist for even orders n.

Examples

			For n=6*2+1=13 the number of diagonal transversals that a semicyclic diagonal Latin square of order 13 may have is 127339, 127830, 128489, 128519, 128533, 128608, 128751, 128818, 128861, 129046, 129059, 129171, 129243, 129286, 129353, 129474, 129641, 129657, 130323 or 131106. Since there are 20 distinct values, a(6)=20.
		

Crossrefs

Showing 1-8 of 8 results.