cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A007016 Number of permutations of length n with 1 fixed and 1 reflected point.

Original entry on oeis.org

0, 1, 0, 0, 8, 20, 96, 656, 5568, 48912, 494080, 5383552, 65097600, 840566080, 11833898496, 176621049600, 2838024476672, 48060623405312, 868000333234176, 16441638519762944, 329723762151352320, 6907027877807330304
Offset: 0

Views

Author

Keywords

Comments

Number of distinct solutions to the order n checkerboard problem, including symmetrical solutions: place n pieces on an n X n board so there is exactly one piece in each row, column and main diagonal. Compare A064280.
Number of magic permutation matrices of order n. - Chai Wah Wu, Jan 15 2019
Upper bound for the number of diagonal transversals in a Latin square: A287647(n) <= A287648(n) <= a(n). - Eduard I. Vatutin, Jan 02 2020

References

  • Simpson, Todd; Permutations with unique fixed and reflected points. Ars Combin. 39 (1995), 97-108.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    x[n_] := x[n] = Integrate[If[EvenQ[n], (x^2 - 4*x + 2)^(n/2), (x - 1)*(x^2 - 4*x + 2)^((n - 1)/2)]/E^x, {x, 0, Infinity}];
    a[n_ /; EvenQ[n]] := With[{m = n/2}, m*(x[2*m] - (2*m - 3)*x[2*m - 1])];
    a[n_ /; OddQ[n]] := With[{m = (n - 1)/2}, (2*m + 1)*x[2*m] + 3*m*x[2*m - 1] - 2*m*(m - 1)*x[2*m - 2]];
    Table[a[n], {n, 0, 21}] // Quiet (* Jean-François Alcover, Jun 29 2018 *)
  • PARI
    a(n) = {my(v = vector(n)); \\ v is A003471
    for(n=4, length(v), v[n] = (n-1)*v[n-1] + 2*if(n%2==1, (n-1)*v[n-2], (n-2) * if(n==4,1,v[n-4])));
    if(n<4, [1,0,0][n], if(n%2==0, n*(v[n] - (n-3)*v[n-1]), 2*n*v[n-1] + 3*(n-1)*v[n-2] - (n-1)*(n-3)*v[n-3])/2)} \\ Andrew Howroyd, Sep 12 2017

Formula

a(2*m) = m*(x(2*m) - (2*m-3)*x(2*m-1)), a(2*m+1) = (2*m+1)*x(2*m) + 3*m*x(2*m-1) - 2*m*(m-1)*x(2*m-2), where x(n) = A003471(n).
Conjecture D-finite with recurrence (365968635435167109808*n^2 -5566069866485493251505*n +20525522573033552369132)*a(n) +(-1215369044326430542311*n^2 +19103429957352794982854*n -73690801030090785944295)*a(n-1) +(-365968635435167109808*n^4 +6663975772790994580929*n^3 -35836353442786038818589*n^2 +34878550744402035813586*n +124043542472821007763204)*a(n-2) +(483431773456096322695*n^4 -10754417727097457203127*n^3 +85154149458907095778621*n^2 -277683967994722584206067*n +286254870342835757751852)*a(n-3) +2*(-393241909113483884738*n^4 +9142334951839265043383*n^3 -78427160779754271402777*n^2 +309283968160862567580813*n -465057422344277141977923)*a(n-4) +2*(-745044547502580209919*n^4 +21471238686323774026196*n^3 -222067832543690193789255*n^2 +944698954932049830084232*n -1372732531859619119793978)*a(n-5) +4*(365968635435167109808*n^4 -5227374504728642916627*n^3 +19793104565012302929789*n^2 +391834816007939927082*n -57365695502678698166146)*a(n-6) +4*(-483431773456096322695*n^4 +7592214312314395379733*n^3 -45284933032689911393913*n^2 +117535885088909103449165*n -84799883220517633629252)*a(n-7) +8*(n-7)*(393241909113483884738*n^3 -4789400677912625536335*n^2 +17834478528905815208536*n -23668675533486426523455)*a(n-8) +8*(n-7)*(n-8)*(745044547502580209919*n^2 -6086915962816073505121*n +12854159797389104313178)*a(n-9)=0. - R. J. Mathar, Feb 27 2025

A287647 Minimum number of diagonal transversals in a diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 4, 1, 2, 0, 0, 0
Offset: 1

Views

Author

Eduard I. Vatutin, May 29 2017

Keywords

Comments

A007016 is an upper bound for the number of diagonal transversals in a Latin square: a(n) <= A287648(n) <= A007016(n). - Eduard I. Vatutin, Jan 02 2020
From Eduard I. Vatutin, Apr 26 2021: (Start)
A diagonal Latin square is a Latin square in which both the main diagonal and main antidiagonal contain each element.
A diagonal transversal is a transversal that includes exactly one element from the main diagonal and exactly one from the antidiagonal. For squares of odd orders, these elements can coincide at the intersection of the diagonals.
All cyclic diagonal Latin squares (see A338562) are diagonal Latin squares, so a(n) <= A342998((n-1)/2). (End)
a(10) <= 3, a(11) <= 43, a(12) = 0, a(13) <= 4756, a(14) <= 1446, a(15) <= 15510, a(16) <= 898988, a(17) <= 12058840, a(18) <= 82577875, a(19) <= 592174879, a(20) <= 4488686380. - Eduard I. Vatutin, Sep 26 2021, updated Jan 20 2025

Examples

			From _Eduard I. Vatutin_, Apr 26 2021: (Start)
For example, the diagonal Latin square
  0 1 2 3
  3 2 1 0
  1 0 3 2
  2 3 0 1
has 4 diagonal transversals:
  0 . . .    . 1 . .    . . 2 .    . . . 3
  . . 1 .    . . . 0    3 . . .    . 2 . .
  . . . 2    . . 3 .    . 0 . .    1 . . .
  . 3 . .    2 . . .    . . . 1    . . 0 .
In addition there are 4 other transversals that are not diagonal transversals and are therefore not included here. (End)
		

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Oct 29 2017
a(9) added by Eduard I. Vatutin, Sep 20 2020

A287644 Maximum number of transversals in a diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 8, 15, 32, 133, 384, 2241
Offset: 1

Views

Author

Eduard I. Vatutin, May 29 2017

Keywords

Comments

Same as the maximum number of transversals in a Latin square of order n except n = 3.
a(10) >= 5504 from Parker and Brown.
Every diagonal Latin square is a Latin square and every orthogonal diagonal Latin square is a diagonal Latin square, so 0 <= A287645(n) <= A357514(n) <= a(n) <= A090741(n). - Eduard I. Vatutin, added Sep 20 2020, updated Mar 03 2023
a(11) >= 37851, a(12) >= 198144, a(13) >= 1030367, a(14) >= 3477504, a(15) >= 36362925, a(16) >= 244744192, a(17) >= 1606008513, a(19) >= 87656896891, a(23) >= 452794797220965, a(25) >= 41609568918940625. - Eduard I. Vatutin, Mar 08 2020, updated Mar 10 2022
Also a(n) is the maximum number of transversals in an orthogonal diagonal Latin square of order n for all orders except n=6 where orthogonal diagonal Latin squares don't exist. - Eduard I. Vatutin, Jan 23 2022
All cyclic diagonal Latin squares are diagonal Latin squares, so A348212((n-1)/2) <= a(n) for all orders n of which cyclic diagonal Latin squares exist. - Eduard I. Vatutin, Mar 25 2021

References

  • J. W. Brown et al., Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics, volume 139 (1992), pp. 43-49.
  • E. T. Parker, Computer investigations of orthogonal Latin squares of order 10, Proc. Sympos. Appl. Math., volume 15 (1963), pp. 73-81.

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Oct 29 2017
a(9) added by Eduard I. Vatutin, Sep 20 2020

A287645 Minimum number of transversals in a diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 8, 3, 32, 7, 8, 68
Offset: 1

Views

Author

Eduard I. Vatutin, May 29 2017

Keywords

Comments

From Eduard I. Vatutin, Sep 20 2020: (Start)
Every diagonal Latin square is a Latin square, so 0 <= a(n) <= A287644(n) <= A090741(n).
A lower bound for odd n is A091323((n-1)/2) <= a(n). (End)
By definition, the main diagonal and antidiagonal of a diagonal Latin square are transversals, so a(n)>=2 for all n>=4 (the two diagonals are the same in the order 1 square and there are no diagonal Latin squares of orders 2 or 3). - Eduard I. Vatutin, Jun 13 2021
All cyclic diagonal Latin squares are diagonal Latin squares, so a(n) <= A348212((n-1)/2) for all orders n of which cyclic diagonal Latin squares exist. - Eduard I. Vatutin, Mar 25 2021
a(10) <= 128, a(11) <= 814, a(12) <= 448, a(13) <= 43093, a(14) <= 25720, a(15) <= 215721, a(16) <= 7465984. - Eduard I. Vatutin, Mar 11 2021, updated Feb 12 2025

Examples

			From _Eduard I. Vatutin_, Apr 24 2021: (Start)
For example, diagonal Latin square
  0 1 2 3
  3 2 1 0
  1 0 3 2
  2 3 0 1
has 4 diagonal transversals (see A287648)
  0 . . .   . 1 . .   . . 2 .   . . . 3
  . . 1 .   . . . 0   3 . . .   . 2 . .
  . . . 2   . . 3 .   . 0 . .   1 . . .
  . 3 . .   2 . . .   . . . 1   . . 0 .
and 4 not diagonal transversals
  0 . . .   . 1 . .   . . 2 .   . . . 3
  . 2 . .   3 . . .   . . . 0   . . 1 .
  . . 3 .   . . . 2   1 . . .   . 0 . .
  . . . 1   . . 0 .   . 3 . .   2 . . .
total 8 transversals. (End)
		

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Oct 29 2017
a(9) added by Eduard I. Vatutin, Sep 20 2020

A345370 a(n) is the number of distinct numbers of diagonal transversals that a diagonal Latin square of order n can have.

Original entry on oeis.org

1, 0, 0, 1, 2, 2, 14, 47, 182
Offset: 1

Views

Author

Eduard I. Vatutin, Jun 16 2021

Keywords

Comments

a(n) <= A287648(n) - A287647(n) + 1.
a(n) <= A287764(n).
Conjecture: a(12) = A287648(12) - A287647(12) + 1. - Natalia Makarova, Oct 26 2021
a(10) >= 736, a(11) >= 1344, a(12) >= 17693, a(13) >= 18241, a(14) >= 294053, a(15) >= 1958394, a(16) >= 13715. - Eduard I. Vatutin, Oct 29 2021, updated Mar 02 2025

Examples

			For n=7 the number of diagonal transversals that a diagonal Latin square of order 7 may have is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, or 27. Since there are 14 distinct values, a(7)=14.
		

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Jul 15 2021
a(9) added by Eduard I. Vatutin, Oct 20 2022

A342998 Minimum number of diagonal transversals in a cyclic diagonal Latin square of order 2n+1.

Original entry on oeis.org

1, 0, 5, 27, 0, 4523, 128818, 0, 204330233, 11232045257
Offset: 0

Views

Author

Eduard I. Vatutin, Apr 02 2021

Keywords

Comments

A cyclic Latin square is a Latin square in which row i is obtained by cyclically shifting row i-1 by d places (see A338562, A123565 and A341585).
Cyclic diagonal Latin squares do not exist for even orders.
a(n) <= A342997(n).
All cyclic diagonal Latin squares are diagonal Latin squares, so A287647(n) <= a((n-1)/2).

Examples

			For n=2 one of best cyclic diagonal Latin squares of order 5
  0 1 2 3 4
  2 3 4 0 1
  4 0 1 2 3
  1 2 3 4 0
  3 4 0 1 2
has a(2)=5 diagonal transversals:
  0 . . . .   . 1 . . .   . . 2 . .   . . . 3 .   . . . . 4
  . . 4 . .   . . . 0 .   . . . . 1   2 . . . .   . 3 . . .
  . . . . 3   4 . . . .   . 0 . . .   . . 1 . .   . . . 2 .
  . 2 . . .   . . 3 . .   . . . 4 .   . . . . 0   1 . . . .
  . . . 1 .   . . . . 2   3 . . . .   . 4 . . .   . . 0 . .
		

Crossrefs

A342997 Maximum number of diagonal transversals in a cyclic diagonal Latin square of order 2n+1.

Original entry on oeis.org

1, 0, 5, 27, 0, 4665, 131106, 0, 204995269, 11254190082
Offset: 0

Views

Author

Eduard I. Vatutin, Apr 02 2021

Keywords

Comments

A cyclic Latin square is a Latin square in which row i is obtained by cyclically shifting row i-1 by d places (see A338562, A123565 and A341585).
Cyclic diagonal Latin squares do not exist for even n.
All cyclic diagonal Latin squares are diagonal Latin squares, so a((n-1)/2) <= A287648(n).
All diagonal transversals are transversals, so a(n) <= A006717(n).
A342998 <= a(n).

Examples

			For n=2 one of the best cyclic diagonal Latin squares of order 5
  0 1 2 3 4
  2 3 4 0 1
  4 0 1 2 3
  1 2 3 4 0
  3 4 0 1 2
has a(2)=5 diagonal transversals:
  0 . . . .   . 1 . . .   . . 2 . .   . . . 3 .   . . . . 4
  . . 4 . .   . . . 0 .   . . . . 1   2 . . . .   . 3 . . .
  . . . . 3   4 . . . .   . 0 . . .   . . 1 . .   . . . 2 .
  . 2 . . .   . . 3 . .   . . . 4 .   . . . . 0   1 . . . .
  . . . 1 .   . . . . 2   3 . . . .   . 4 . . .   . . 0 . .
		

Crossrefs

A360220 Maximum number of diagonal transversals in an orthogonal diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 4, 5, 0, 27, 120, 333
Offset: 1

Views

Author

Eduard I. Vatutin, Jan 30 2023

Keywords

Comments

An orthogonal diagonal Latin square is a diagonal Latin square that has at least one orthogonal diagonal mate.
a(10) >= 866, a(11) >= 4828, a(12) >= 30192, a(13) >= 131106, a(17) >= 204995269, a(19) >= 11254190082.
For most orders n, at least one diagonal Latin square with the maximal number of diagonal transversals has an orthogonal mate and A287648(n) = a(n). Known exceptions: n=6 and n=10. - Eduard I. Vatutin, Feb 17 2023
Every orthogonal diagonal Latin square is a diagonal Latin square, so A287647(n) <= A354068(n) <= a(n) <= A287648(n). - Eduard I. Vatutin, Mar 04 2023

Crossrefs

A354068 Minimum number of diagonal transversals in an orthogonal diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 4, 5, 0, 8, 8, 14
Offset: 1

Views

Author

Eduard I. Vatutin, May 16 2022

Keywords

Comments

An orthogonal diagonal Latin square is a diagonal Latin square with at least one orthogonal diagonal mate.
a(10) <= 60, a(11) <= 279, a(12) <= 588, a(13) <= 9610.
Every orthogonal diagonal Latin square is a diagonal Latin square, so A287647(n) <= a(n) <= A360220(n) <= A287648(n). - Eduard I. Vatutin, Mar 03 2023

Examples

			One of the best orthogonal diagonal Latin squares of order n=9
  0 1 2 3 4 5 6 7 8
  1 2 3 8 6 4 7 0 5
  5 4 6 0 7 8 3 1 2
  7 3 1 5 2 6 0 8 4
  8 7 4 6 1 2 5 3 0
  3 0 5 4 8 7 1 2 6
  4 6 7 2 3 0 8 5 1
  6 5 8 1 0 3 2 4 7
  2 8 0 7 5 1 4 6 3
has orthogonal diagonal mate
  0 1 2 3 4 5 6 7 8
  2 3 8 7 5 6 4 1 0
  1 5 4 8 6 0 2 3 7
  8 7 0 6 1 3 5 4 2
  5 0 1 2 7 8 3 6 4
  4 6 7 0 3 2 8 5 1
  3 8 5 4 0 7 1 2 6
  7 4 6 5 2 1 0 8 3
  6 2 3 1 8 4 7 0 5
and 14 diagonal transversals, which is the minimal number, so a(9)=14.
		

Crossrefs

A381971 Maximum number of diagonal transversals in a Brown's diagonal Latin square of order 2n.

Original entry on oeis.org

0, 4, 6, 120, 890
Offset: 1

Views

Author

Eduard I. Vatutin, Mar 11 2025

Keywords

Comments

A Brown's diagonal Latin square is a horizontally symmetric row-inverse or vertically symmetric column-inverse diagonal Latin square (see A339641).
Brown's diagonal Latin squares are special case of plain symmetry diagonal Latin squares that are not exist for odd orders.
a(6)>=28496, a(7)>=490218, a(8)>=32172800.

Crossrefs

Showing 1-10 of 12 results. Next